語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representation learning for natural ...
~
Liu, Zhiyuan.
FindBook
Google Book
Amazon
博客來
Representation learning for natural language processing
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Representation learning for natural language processing/ by Zhiyuan Liu, Yankai Lin, Maosong Sun.
作者:
Liu, Zhiyuan.
其他作者:
Lin, Yankai.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xxiv, 334 p. :ill., digital ;24 cm.
內容註:
1. Representation Learning and NLP -- 2. Word Representation -- 3. Compositional Semantics -- 4. Sentence Representation -- 5. Document Representation -- 6. Sememe Knowledge Representation -- 7. World Knowledge Representation -- 8. Network Representation -- 9. Cross-Modal Representation -- 10. Resources -- 11. Outlook.
Contained By:
Springer Nature eBook
標題:
Natural language processing (Computer science) -
電子資源:
https://doi.org/10.1007/978-981-15-5573-2
ISBN:
9789811555732
Representation learning for natural language processing
Liu, Zhiyuan.
Representation learning for natural language processing
[electronic resource] /by Zhiyuan Liu, Yankai Lin, Maosong Sun. - Singapore :Springer Singapore :2020. - xxiv, 334 p. :ill., digital ;24 cm.
1. Representation Learning and NLP -- 2. Word Representation -- 3. Compositional Semantics -- 4. Sentence Representation -- 5. Document Representation -- 6. Sememe Knowledge Representation -- 7. World Knowledge Representation -- 8. Network Representation -- 9. Cross-Modal Representation -- 10. Resources -- 11. Outlook.
Open access.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP) It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
ISBN: 9789811555732
Standard No.: 10.1007/978-981-15-5573-2doiSubjects--Topical Terms:
565309
Natural language processing (Computer science)
LC Class. No.: QA76.9.N38
Dewey Class. No.: 006.35
Representation learning for natural language processing
LDR
:02547nmm a2200349 a 4500
001
2222330
003
DE-He213
005
20200707183143.0
006
m d
007
cr nn 008maaau
008
210108s2020 si s 0 eng d
020
$a
9789811555732
$q
(electronic bk.)
020
$a
9789811555725
$q
(paper)
024
7
$a
10.1007/978-981-15-5573-2
$2
doi
035
$a
978-981-15-5573-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.N38
072
7
$a
UYQL
$2
bicssc
072
7
$a
COM073000
$2
bisacsh
072
7
$a
UYQL
$2
thema
072
7
$a
UYQL
$2
thema
082
0 4
$a
006.35
$2
23
090
$a
QA76.9.N38
$b
L783 2020
100
1
$a
Liu, Zhiyuan.
$3
3460957
245
1 0
$a
Representation learning for natural language processing
$h
[electronic resource] /
$c
by Zhiyuan Liu, Yankai Lin, Maosong Sun.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xxiv, 334 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Representation Learning and NLP -- 2. Word Representation -- 3. Compositional Semantics -- 4. Sentence Representation -- 5. Document Representation -- 6. Sememe Knowledge Representation -- 7. World Knowledge Representation -- 8. Network Representation -- 9. Cross-Modal Representation -- 10. Resources -- 11. Outlook.
506
$a
Open access.
520
$a
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP) It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
650
0
$a
Natural language processing (Computer science)
$3
565309
650
2 4
$a
Computational Linguistics.
$3
893900
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Natural Language Processing (NLP)
$3
3381674
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
700
1
$a
Lin, Yankai.
$3
3460958
700
1
$a
Sun, Maosong.
$3
2106868
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-15-5573-2
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9395205
電子資源
11.線上閱覽_V
電子書
EB QA76.9.N38
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入