語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning in medical imaging ...
~
MLMI (Workshop) (2019 :)
FindBook
Google Book
Amazon
博客來
Machine learning in medical imaging = 10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning in medical imaging/ edited by Heung-Il Suk ... [et al.].
其他題名:
10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
其他題名:
MLMI 2019
其他作者:
Suk, Heung-Il.
團體作者:
MLMI (Workshop)
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
xviii, 695 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-030-32692-0
ISBN:
9783030326920
Machine learning in medical imaging = 10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
Machine learning in medical imaging
10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /[electronic resource] :MLMI 2019edited by Heung-Il Suk ... [et al.]. - Cham :Springer International Publishing :2019. - xviii, 695 p. :ill. (some col.), digital ;24 cm. - Lecture notes in computer science,118610302-9743 ;. - Lecture notes in computer science ;11861..
This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.
ISBN: 9783030326920
Standard No.: 10.1007/978-3-030-32692-0doiSubjects--Topical Terms:
576368
Machine learning
--Congresses.
LC Class. No.: RC78.7.D53 / M55 2019
Dewey Class. No.: 006.6
Machine learning in medical imaging = 10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
LDR
:02177nmm a2200373 a 4500
001
2218835
003
DE-He213
005
20191026082319.0
006
m d
007
cr nn 008maaau
008
201126s2019 sz s 0 eng d
020
$a
9783030326920
$q
(electronic bk.)
020
$a
9783030326913
$q
(paper)
024
7
$a
10.1007/978-3-030-32692-0
$2
doi
035
$a
978-3-030-32692-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC78.7.D53
$b
M55 2019
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.6
$2
23
090
$a
RC78.7.D53
$b
M685 2019
111
2
$a
MLMI (Workshop)
$n
(10th :
$d
2019 :
$c
Shenzhen Shi, China)
$3
3453575
245
1 0
$a
Machine learning in medical imaging
$h
[electronic resource] :
$b
10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
$c
edited by Heung-Il Suk ... [et al.].
246
3
$a
MLMI 2019
246
3
$a
MICCAI 2019
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xviii, 695 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11861
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
520
$a
This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.
650
0
$a
Machine learning
$x
Congresses.
$3
576368
650
0
$a
Diagnostic imaging
$x
Data processing
$v
Congresses.
$3
893542
650
0
$a
Artificial intelligence
$x
Medical applications
$x
Congresses.
$3
660945
650
1 4
$a
Image Processing and Computer Vision.
$3
891070
650
2 4
$a
Artificial Intelligence.
$3
769149
700
1
$a
Suk, Heung-Il.
$3
3453576
710
2
$a
SpringerLink (Online service)
$3
836513
711
2
$a
International Conference on Medical Image Computing and Computer-Assisted Intervention
$n
(22nd :
$d
2019 :
$c
Shenzhen Shi, China)
$3
3446146
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
11861.
$3
3453577
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
3382509
856
4 0
$u
https://doi.org/10.1007/978-3-030-32692-0
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9393694
電子資源
11.線上閱覽_V
電子書
EB RC78.7.D53 M55 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入