語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modern singular spectral-based denoi...
~
Tiwari, R. K.
FindBook
Google Book
Amazon
博客來
Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data/ by R. K. Tiwari, R. Rekapalli.
作者:
Tiwari, R. K.
其他作者:
Rekapalli, R.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xvi, 157 p. :ill., digital ;24 cm.
內容註:
1. Introduction to Denoising and Data Gap Filling of Seismic Reflection Data -- 2. Time and Frequency Domain Eigen Image and Cadzow Noise Filtering of 2D Seismic Data -- 3. Time Domain Frequency Filtering of High Resolution Seismic Reflection Data Using Singular Spectral Analysis -- 4. Frequency and Time Domain SSA for 2D Seismic Data Denoising -- 5. Filtering 2D Seismic Data Using the Time Slice Singular Spectral Analysis -- 6. Robust and Fast Algorithms for Singular Spectral Analysis of Seismic Data -- 7. Denoising the 3D Seismic Data Using Multichannel Singular Spectrum Analysis -- 8. Seismic Data Gap Filling Using the Singular Spectrum Based Analysis -- 9. Singular Spectrum vs. Wavelet Based Denoising Schemes in Generalized Inversion Based Seismic Wavelet Estimation -- 10. Singular Spectrum-based Filtering to Enhance the Resolution of Seismic Attributes -- 11. Singular Spectrum Analysis with MATLAB -- Appendix -- Index.
Contained By:
Springer eBooks
標題:
Seismology - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-030-19304-1
ISBN:
9783030193041
Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data
Tiwari, R. K.
Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data
[electronic resource] /by R. K. Tiwari, R. Rekapalli. - Cham :Springer International Publishing :2020. - xvi, 157 p. :ill., digital ;24 cm.
1. Introduction to Denoising and Data Gap Filling of Seismic Reflection Data -- 2. Time and Frequency Domain Eigen Image and Cadzow Noise Filtering of 2D Seismic Data -- 3. Time Domain Frequency Filtering of High Resolution Seismic Reflection Data Using Singular Spectral Analysis -- 4. Frequency and Time Domain SSA for 2D Seismic Data Denoising -- 5. Filtering 2D Seismic Data Using the Time Slice Singular Spectral Analysis -- 6. Robust and Fast Algorithms for Singular Spectral Analysis of Seismic Data -- 7. Denoising the 3D Seismic Data Using Multichannel Singular Spectrum Analysis -- 8. Seismic Data Gap Filling Using the Singular Spectrum Based Analysis -- 9. Singular Spectrum vs. Wavelet Based Denoising Schemes in Generalized Inversion Based Seismic Wavelet Estimation -- 10. Singular Spectrum-based Filtering to Enhance the Resolution of Seismic Attributes -- 11. Singular Spectrum Analysis with MATLAB -- Appendix -- Index.
This book discusses the latest advances in singular spectrum-based algorithms for seismic data processing, providing an update on recent developments in this field. Over the past few decades, researchers have extensively studied the application of the singular spectrum-based time and frequency domain eigen image methods, singular spectrum analysis (SSA) and multichannel SSA for various geophysical data. This book addresses seismic reflection signals, which represent the amalgamated signals of several unwanted signals/noises, such as ground roll, diffractions etc. Decomposition of such non-stationary and erratic field data is one of the multifaceted tasks in seismic data processing. This volume also includes comprehensive methodological and parametric descriptions, testing on appropriately generated synthetic data, as well as comparisons between time and frequency domain algorithms and their applications to the field data on 1D, 2D, 3D and 4D data sets. Lastly, it features an exclusive chapter with MATLAB coding for SSA.
ISBN: 9783030193041
Standard No.: 10.1007/978-3-030-19304-1doiSubjects--Topical Terms:
1085846
Seismology
--Data processing.
LC Class. No.: QE539.2.D36 / T593 2020
Dewey Class. No.: 551.22
Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data
LDR
:03034nmm a2200337 a 4500
001
2217356
003
DE-He213
005
20200810102804.0
006
m d
007
cr nn 008maaau
008
201120s2020 sz s 0 eng d
020
$a
9783030193041
$q
(electronic bk.)
020
$a
9783030193034
$q
(paper)
024
7
$a
10.1007/978-3-030-19304-1
$2
doi
035
$a
978-3-030-19304-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QE539.2.D36
$b
T593 2020
072
7
$a
PHVG
$2
bicssc
072
7
$a
SCI032000
$2
bisacsh
072
7
$a
PHVG
$2
thema
072
7
$a
TQ
$2
thema
082
0 4
$a
551.22
$2
23
090
$a
QE539.2.D36
$b
T623 2020
100
1
$a
Tiwari, R. K.
$3
3450506
245
1 0
$a
Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data
$h
[electronic resource] /
$c
by R. K. Tiwari, R. Rekapalli.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xvi, 157 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Introduction to Denoising and Data Gap Filling of Seismic Reflection Data -- 2. Time and Frequency Domain Eigen Image and Cadzow Noise Filtering of 2D Seismic Data -- 3. Time Domain Frequency Filtering of High Resolution Seismic Reflection Data Using Singular Spectral Analysis -- 4. Frequency and Time Domain SSA for 2D Seismic Data Denoising -- 5. Filtering 2D Seismic Data Using the Time Slice Singular Spectral Analysis -- 6. Robust and Fast Algorithms for Singular Spectral Analysis of Seismic Data -- 7. Denoising the 3D Seismic Data Using Multichannel Singular Spectrum Analysis -- 8. Seismic Data Gap Filling Using the Singular Spectrum Based Analysis -- 9. Singular Spectrum vs. Wavelet Based Denoising Schemes in Generalized Inversion Based Seismic Wavelet Estimation -- 10. Singular Spectrum-based Filtering to Enhance the Resolution of Seismic Attributes -- 11. Singular Spectrum Analysis with MATLAB -- Appendix -- Index.
520
$a
This book discusses the latest advances in singular spectrum-based algorithms for seismic data processing, providing an update on recent developments in this field. Over the past few decades, researchers have extensively studied the application of the singular spectrum-based time and frequency domain eigen image methods, singular spectrum analysis (SSA) and multichannel SSA for various geophysical data. This book addresses seismic reflection signals, which represent the amalgamated signals of several unwanted signals/noises, such as ground roll, diffractions etc. Decomposition of such non-stationary and erratic field data is one of the multifaceted tasks in seismic data processing. This volume also includes comprehensive methodological and parametric descriptions, testing on appropriately generated synthetic data, as well as comparisons between time and frequency domain algorithms and their applications to the field data on 1D, 2D, 3D and 4D data sets. Lastly, it features an exclusive chapter with MATLAB coding for SSA.
650
0
$a
Seismology
$x
Data processing.
$3
1085846
650
0
$a
Seismic reflection method.
$3
560814
650
0
$a
Microseisms.
$3
3445166
650
0
$a
Spectrum analysis.
$3
520440
650
1 4
$a
Geophysics and Environmental Physics.
$3
1530865
650
2 4
$a
Geophysics/Geodesy.
$3
891016
650
2 4
$a
Noise Control.
$3
896314
650
2 4
$a
Environmental Management.
$3
893809
650
2 4
$a
Earth System Sciences.
$3
1566948
650
2 4
$a
Fossil Fuels (incl. Carbon Capture)
$3
1569078
700
1
$a
Rekapalli, R.
$3
3450507
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-19304-1
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9392260
電子資源
11.線上閱覽_V
電子書
EB QE539.2.D36 T593 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入