語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modeling information diffusion in on...
~
Wang, Haiyan.
FindBook
Google Book
Amazon
博客來
Modeling information diffusion in online social networks with partial differential equations
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Modeling information diffusion in online social networks with partial differential equations/ by Haiyan Wang, Feng Wang, Kuai Xu.
作者:
Wang, Haiyan.
其他作者:
Wang, Feng.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xiii, 144 p. :ill., digital ;24 cm.
內容註:
Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
Contained By:
Springer eBooks
標題:
Differential equations, Partial. -
電子資源:
https://doi.org/10.1007/978-3-030-38852-2
ISBN:
9783030388522
Modeling information diffusion in online social networks with partial differential equations
Wang, Haiyan.
Modeling information diffusion in online social networks with partial differential equations
[electronic resource] /by Haiyan Wang, Feng Wang, Kuai Xu. - Cham :Springer International Publishing :2020. - xiii, 144 p. :ill., digital ;24 cm. - Surveys and tutorials in the applied mathematical sciences,v.72199-4765 ;. - Surveys and tutorials in the applied mathematical sciences ;v.7..
Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
ISBN: 9783030388522
Standard No.: 10.1007/978-3-030-38852-2doiSubjects--Topical Terms:
518115
Differential equations, Partial.
LC Class. No.: QA374 / .W364 2020
Dewey Class. No.: 515.353
Modeling information diffusion in online social networks with partial differential equations
LDR
:02615nmm a2200337 a 4500
001
2217221
003
DE-He213
005
20200806102941.0
006
m d
007
cr nn 008maaau
008
201120s2020 sz s 0 eng d
020
$a
9783030388522
$q
(electronic bk.)
020
$a
9783030388508
$q
(paper)
024
7
$a
10.1007/978-3-030-38852-2
$2
doi
035
$a
978-3-030-38852-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA374
$b
.W364 2020
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.353
$2
23
090
$a
QA374
$b
.W246 2020
100
1
$a
Wang, Haiyan.
$3
935645
245
1 0
$a
Modeling information diffusion in online social networks with partial differential equations
$h
[electronic resource] /
$c
by Haiyan Wang, Feng Wang, Kuai Xu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 144 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Surveys and tutorials in the applied mathematical sciences,
$x
2199-4765 ;
$v
v.7
505
0
$a
Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
520
$a
The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
650
0
$a
Differential equations, Partial.
$3
518115
650
0
$a
Diffusion
$x
Mathematical models.
$3
750350
650
0
$a
Online social networks.
$3
624374
650
1 4
$a
Partial Differential Equations.
$3
890899
650
2 4
$a
Computer Appl. in Social and Behavioral Sciences.
$3
892702
650
2 4
$a
Communication Studies.
$3
1566065
700
1
$a
Wang, Feng.
$3
1037905
700
1
$a
Xu, Kuai.
$3
1298429
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Surveys and tutorials in the applied mathematical sciences ;
$v
v.7.
$3
3450295
856
4 0
$u
https://doi.org/10.1007/978-3-030-38852-2
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9392125
電子資源
11.線上閱覽_V
電子書
EB QA374 .W364 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入