語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
查詢
薦購
讀者園地
我的帳戶
說明
簡單查詢
進階查詢
圖書館推薦圖書
讀者推薦圖書(公開)
教師指定參考書
借閱排行榜
預約排行榜
分類瀏覽
展示書
專題書單RSS
個人資料
個人檢索策略
個人薦購
借閱紀錄/續借/預約
個人評論
個人書籤
東區互惠借書
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Identifiability and regression analy...
~
Lecca, Paola.
FindBook
Google Book
Amazon
博客來
Identifiability and regression analysis of biological systems models = statistical and mathematical foundations and R scripts /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Identifiability and regression analysis of biological systems models/ by Paola Lecca.
其他題名:
statistical and mathematical foundations and R scripts /
作者:
Lecca, Paola.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
x, 82 p. :ill., digital ;24 cm.
內容註:
1 Complex systems and sets of data -- 2 Dynamic models -- 3 Model identifiability -- 4 Relationships between phenomena -- 5 Codes.
Contained By:
Springer eBooks
標題:
Regression analysis. -
電子資源:
https://doi.org/10.1007/978-3-030-41255-5
ISBN:
9783030412555
Identifiability and regression analysis of biological systems models = statistical and mathematical foundations and R scripts /
Lecca, Paola.
Identifiability and regression analysis of biological systems models
statistical and mathematical foundations and R scripts /[electronic resource] :by Paola Lecca. - Cham :Springer International Publishing :2020. - x, 82 p. :ill., digital ;24 cm. - SpringerBriefs in statistics,2191-544X. - SpringerBriefs in statistics..
1 Complex systems and sets of data -- 2 Dynamic models -- 3 Model identifiability -- 4 Relationships between phenomena -- 5 Codes.
This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection. Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting their own regression analysis and diagnostics without supervision. Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.
ISBN: 9783030412555
Standard No.: 10.1007/978-3-030-41255-5doiSubjects--Topical Terms:
529831
Regression analysis.
LC Class. No.: QA278.2 / .L433 2020
Dewey Class. No.: 519.536
Identifiability and regression analysis of biological systems models = statistical and mathematical foundations and R scripts /
LDR
:02715nmm a2200349 a 4500
001
2217202
003
DE-He213
005
20200806112258.0
006
m d
007
cr nn 008maaau
008
201120s2020 sz s 0 eng d
020
$a
9783030412555
$q
(electronic bk.)
020
$a
9783030412548
$q
(paper)
024
7
$a
10.1007/978-3-030-41255-5
$2
doi
035
$a
978-3-030-41255-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
$b
.L433 2020
072
7
$a
PBT
$2
bicssc
072
7
$a
MED090000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
MBNS
$2
thema
082
0 4
$a
519.536
$2
23
090
$a
QA278.2
$b
.L457 2020
100
1
$a
Lecca, Paola.
$3
3450267
245
1 0
$a
Identifiability and regression analysis of biological systems models
$h
[electronic resource] :
$b
statistical and mathematical foundations and R scripts /
$c
by Paola Lecca.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 82 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in statistics,
$x
2191-544X
505
0
$a
1 Complex systems and sets of data -- 2 Dynamic models -- 3 Model identifiability -- 4 Relationships between phenomena -- 5 Codes.
520
$a
This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection. Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting their own regression analysis and diagnostics without supervision. Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.
650
0
$a
Regression analysis.
$3
529831
650
0
$a
Biochemistry
$x
Statistical methods.
$3
2070255
650
0
$a
Systems biology
$x
Statistical methods.
$3
2186938
650
1 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
891086
650
2 4
$a
Systems Biology.
$3
928020
650
2 4
$a
Biostatistics.
$3
1002712
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Mathematical and Computational Biology.
$3
1566274
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1005896
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in statistics.
$3
1565658
856
4 0
$u
https://doi.org/10.1007/978-3-030-41255-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9392106
電子資源
11.線上閱覽_V
電子書
EB QA278.2 .L433 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入