語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Differential privacy for dynamic data
~
Le Ny, Jerome.
FindBook
Google Book
Amazon
博客來
Differential privacy for dynamic data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Differential privacy for dynamic data/ by Jerome Le Ny.
作者:
Le Ny, Jerome.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xi, 110 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Defining Privacy Preserving Data Analysis -- Chapter 2. Basic Differentially Private Mechanism -- Chapter 3. A Two-Stage Architecture for Differentially Private Filtering -- Chapter 4. Differentially Private Filtering for Stationary Stochastic Collective Signals -- Chapter 5. Differentially Private Kalman Filtering -- Chapter 6. Differentially Private Nonlinear Observers -- Chapter 7. Conclusion.
Contained By:
Springer eBooks
標題:
Data protection. -
電子資源:
https://doi.org/10.1007/978-3-030-41039-1
ISBN:
9783030410391
Differential privacy for dynamic data
Le Ny, Jerome.
Differential privacy for dynamic data
[electronic resource] /by Jerome Le Ny. - Cham :Springer International Publishing :2020. - xi, 110 p. :ill., digital ;24 cm. - SpringerBriefs in electrical and computer engineering. Control, automation and robotics. - SpringerBriefs in electrical and computer engineering.Control, automation and robotics..
Chapter 1. Defining Privacy Preserving Data Analysis -- Chapter 2. Basic Differentially Private Mechanism -- Chapter 3. A Two-Stage Architecture for Differentially Private Filtering -- Chapter 4. Differentially Private Filtering for Stationary Stochastic Collective Signals -- Chapter 5. Differentially Private Kalman Filtering -- Chapter 6. Differentially Private Nonlinear Observers -- Chapter 7. Conclusion.
This Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.
ISBN: 9783030410391
Standard No.: 10.1007/978-3-030-41039-1doiSubjects--Topical Terms:
590548
Data protection.
LC Class. No.: QA76.9.A25 / L469 2020
Dewey Class. No.: 005.8
Differential privacy for dynamic data
LDR
:02384nmm a2200349 a 4500
001
2217071
003
DE-He213
005
20200804112919.0
006
m d
007
cr nn 008maaau
008
201120s2020 sz s 0 eng d
020
$a
9783030410391
$q
(electronic bk.)
020
$a
9783030410384
$q
(paper)
024
7
$a
10.1007/978-3-030-41039-1
$2
doi
035
$a
978-3-030-41039-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.A25
$b
L469 2020
072
7
$a
TTBM
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
TTBM
$2
thema
072
7
$a
UYS
$2
thema
082
0 4
$a
005.8
$2
23
090
$a
QA76.9.A25
$b
L433 2020
100
1
$a
Le Ny, Jerome.
$3
3449994
245
1 0
$a
Differential privacy for dynamic data
$h
[electronic resource] /
$c
by Jerome Le Ny.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 110 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in electrical and computer engineering. Control, automation and robotics
505
0
$a
Chapter 1. Defining Privacy Preserving Data Analysis -- Chapter 2. Basic Differentially Private Mechanism -- Chapter 3. A Two-Stage Architecture for Differentially Private Filtering -- Chapter 4. Differentially Private Filtering for Stationary Stochastic Collective Signals -- Chapter 5. Differentially Private Kalman Filtering -- Chapter 6. Differentially Private Nonlinear Observers -- Chapter 7. Conclusion.
520
$a
This Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.
650
0
$a
Data protection.
$3
590548
650
0
$a
Filters (Mathematics)
$3
556522
650
0
$a
Stochastic processes.
$3
520663
650
0
$a
Privacy, Right of.
$3
606607
650
1 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Systems and Data Security.
$3
898223
650
2 4
$a
Control and Systems Theory.
$3
3381515
650
2 4
$a
Data Storage Representation.
$3
892664
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in electrical and computer engineering.
$p
Control, automation and robotics.
$3
1622177
856
4 0
$u
https://doi.org/10.1007/978-3-030-41039-1
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9391975
電子資源
11.線上閱覽_V
電子書
EB QA76.9.A25 L469 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入