語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Digital mapping of soil landscape pa...
~
Garg, Pradeep Kumar.
FindBook
Google Book
Amazon
博客來
Digital mapping of soil landscape parameters = geospatial analyses using machine learning and geomatics /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Digital mapping of soil landscape parameters/ by Pradeep Kumar Garg ... [et al.].
其他題名:
geospatial analyses using machine learning and geomatics /
其他作者:
Garg, Pradeep Kumar.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xix, 142 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Concept of Digital Mapping -- Chapter 2. Different Approaches on Digital Mapping of Soil -- Chapter 3. Selection of Suitable Variables and Their Development -- Chapter 4. Digital Soil Mapping: Implementation and Assessment -- Chapter 5. Prediction Modelsfor Crop Mapping -- Chapter 6. Spatial Soil Moisture Prediction Model over an Agricultural Land.
Contained By:
Springer eBooks
標題:
Digital soil mapping. -
電子資源:
https://doi.org/10.1007/978-981-15-3238-2
ISBN:
9789811532382
Digital mapping of soil landscape parameters = geospatial analyses using machine learning and geomatics /
Digital mapping of soil landscape parameters
geospatial analyses using machine learning and geomatics /[electronic resource] :by Pradeep Kumar Garg ... [et al.]. - Singapore :Springer Singapore :2020. - xix, 142 p. :ill., digital ;24 cm. - Studies in big data,v.722197-6503 ;. - Studies in big data ;v.72..
Chapter 1. Concept of Digital Mapping -- Chapter 2. Different Approaches on Digital Mapping of Soil -- Chapter 3. Selection of Suitable Variables and Their Development -- Chapter 4. Digital Soil Mapping: Implementation and Assessment -- Chapter 5. Prediction Modelsfor Crop Mapping -- Chapter 6. Spatial Soil Moisture Prediction Model over an Agricultural Land.
This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of 'soil'. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management.
ISBN: 9789811532382
Standard No.: 10.1007/978-981-15-3238-2doiSubjects--Topical Terms:
907742
Digital soil mapping.
LC Class. No.: S592.147
Dewey Class. No.: 631.49
Digital mapping of soil landscape parameters = geospatial analyses using machine learning and geomatics /
LDR
:02699nmm a2200337 a 4500
001
2216333
003
DE-He213
005
20200714161118.0
006
m d
007
cr nn 008maaau
008
201120s2020 si s 0 eng d
020
$a
9789811532382
$q
(electronic bk.)
020
$a
9789811532375
$q
(paper)
024
7
$a
10.1007/978-981-15-3238-2
$2
doi
035
$a
978-981-15-3238-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
S592.147
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
631.49
$2
23
090
$a
S592.147
$b
.D574 2020
245
0 0
$a
Digital mapping of soil landscape parameters
$h
[electronic resource] :
$b
geospatial analyses using machine learning and geomatics /
$c
by Pradeep Kumar Garg ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xix, 142 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.72
505
0
$a
Chapter 1. Concept of Digital Mapping -- Chapter 2. Different Approaches on Digital Mapping of Soil -- Chapter 3. Selection of Suitable Variables and Their Development -- Chapter 4. Digital Soil Mapping: Implementation and Assessment -- Chapter 5. Prediction Modelsfor Crop Mapping -- Chapter 6. Spatial Soil Moisture Prediction Model over an Agricultural Land.
520
$a
This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of 'soil'. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management.
650
0
$a
Digital soil mapping.
$3
907742
650
0
$a
Geospatial data
$x
Computer processing.
$3
3448573
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
890882
700
1
$a
Garg, Pradeep Kumar.
$3
3448571
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.72.
$3
3448572
856
4 0
$u
https://doi.org/10.1007/978-981-15-3238-2
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9391237
電子資源
11.線上閱覽_V
電子書
EB S592.147
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入