語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intrusion detection = a data mining ...
~
Sengupta, Nandita.
FindBook
Google Book
Amazon
博客來
Intrusion detection = a data mining approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Intrusion detection/ by Nandita Sengupta, Jaya Sil.
其他題名:
a data mining approach /
作者:
Sengupta, Nandita.
其他作者:
Sil, Jaya.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xx, 136 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Discretization -- Chapter 3. Data Reduction -- Chapter 4. Q-Learning Classifiers -- Chapter 5. Hierarchical Q - Learning Classifier -- Chapter 6. Conclusions and Future Research.
Contained By:
Springer eBooks
標題:
Intrusion detection systems (Computer security) -
電子資源:
https://doi.org/10.1007/978-981-15-2716-6
ISBN:
9789811527166
Intrusion detection = a data mining approach /
Sengupta, Nandita.
Intrusion detection
a data mining approach /[electronic resource] :by Nandita Sengupta, Jaya Sil. - Singapore :Springer Singapore :2020. - xx, 136 p. :ill., digital ;24 cm. - Cognitive intelligence and robotics,2520-1956. - Cognitive intelligence and robotics..
Chapter 1. Introduction -- Chapter 2. Discretization -- Chapter 3. Data Reduction -- Chapter 4. Q-Learning Classifiers -- Chapter 5. Hierarchical Q - Learning Classifier -- Chapter 6. Conclusions and Future Research.
This book presents state-of-the-art research on intrusion detection using reinforcement learning, fuzzy and rough set theories, and genetic algorithm. Reinforcement learning is employed to incrementally learn the computer network behavior, while rough and fuzzy sets are utilized to handle the uncertainty involved in the detection of traffic anomaly to secure data resources from possible attack. Genetic algorithms make it possible to optimally select the network traffic parameters to reduce the risk of network intrusion. The book is unique in terms of its content, organization, and writing style. Primarily intended for graduate electrical and computer engineering students, it is also useful for doctoral students pursuing research in intrusion detection and practitioners interested in network security and administration. The book covers a wide range of applications, from general computer security to server, network, and cloud security.
ISBN: 9789811527166
Standard No.: 10.1007/978-981-15-2716-6doiSubjects--Topical Terms:
1085454
Intrusion detection systems (Computer security)
LC Class. No.: TK5105.59 / .S45 2020
Dewey Class. No.: 005.83
Intrusion detection = a data mining approach /
LDR
:02199nmm a2200337 a 4500
001
2215517
003
DE-He213
005
20200124103647.0
006
m d
007
cr nn 008maaau
008
201120s2020 si s 0 eng d
020
$a
9789811527166
$q
(electronic bk.)
020
$a
9789811527159
$q
(paper)
024
7
$a
10.1007/978-981-15-2716-6
$2
doi
035
$a
978-981-15-2716-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5105.59
$b
.S45 2020
072
7
$a
UKN
$2
bicssc
072
7
$a
COM075000
$2
bisacsh
072
7
$a
UKN
$2
thema
082
0 4
$a
005.83
$2
23
090
$a
TK5105.59
$b
.S476 2020
100
1
$a
Sengupta, Nandita.
$3
3447090
245
1 0
$a
Intrusion detection
$h
[electronic resource] :
$b
a data mining approach /
$c
by Nandita Sengupta, Jaya Sil.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xx, 136 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cognitive intelligence and robotics,
$x
2520-1956
505
0
$a
Chapter 1. Introduction -- Chapter 2. Discretization -- Chapter 3. Data Reduction -- Chapter 4. Q-Learning Classifiers -- Chapter 5. Hierarchical Q - Learning Classifier -- Chapter 6. Conclusions and Future Research.
520
$a
This book presents state-of-the-art research on intrusion detection using reinforcement learning, fuzzy and rough set theories, and genetic algorithm. Reinforcement learning is employed to incrementally learn the computer network behavior, while rough and fuzzy sets are utilized to handle the uncertainty involved in the detection of traffic anomaly to secure data resources from possible attack. Genetic algorithms make it possible to optimally select the network traffic parameters to reduce the risk of network intrusion. The book is unique in terms of its content, organization, and writing style. Primarily intended for graduate electrical and computer engineering students, it is also useful for doctoral students pursuing research in intrusion detection and practitioners interested in network security and administration. The book covers a wide range of applications, from general computer security to server, network, and cloud security.
650
0
$a
Intrusion detection systems (Computer security)
$3
1085454
650
0
$a
Data mining.
$3
562972
650
1 4
$a
Computer Communication Networks.
$3
775497
650
2 4
$a
Systems and Data Security.
$3
898223
650
2 4
$a
Cryptology.
$3
3382308
700
1
$a
Sil, Jaya.
$3
3308764
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Cognitive intelligence and robotics.
$3
3338190
856
4 0
$u
https://doi.org/10.1007/978-981-15-2716-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9390421
電子資源
11.線上閱覽_V
電子書
EB TK5105.59 .S45 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入