語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geometric control of fracture and to...
~
Mitchell, Noah.
FindBook
Google Book
Amazon
博客來
Geometric control of fracture and topological metamaterials
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Geometric control of fracture and topological metamaterials/ by Noah Mitchell.
作者:
Mitchell, Noah.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xix, 121 p. :ill., digital ;24 cm.
內容註:
Chapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook.
Contained By:
Springer eBooks
標題:
Metamaterials - Fracture -
電子資源:
https://doi.org/10.1007/978-3-030-36361-1
ISBN:
9783030363611
Geometric control of fracture and topological metamaterials
Mitchell, Noah.
Geometric control of fracture and topological metamaterials
[electronic resource] /by Noah Mitchell. - Cham :Springer International Publishing :2020. - xix, 121 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Chapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook.
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
ISBN: 9783030363611
Standard No.: 10.1007/978-3-030-36361-1doiSubjects--Topical Terms:
3446583
Metamaterials
--Fracture
LC Class. No.: TK7871.15.M48 / M583 2020
Dewey Class. No.: 620.1126
Geometric control of fracture and topological metamaterials
LDR
:02299nmm a2200337 a 4500
001
2215300
003
DE-He213
005
20200528144203.0
006
m d
007
cr nn 008maaau
008
201119s2020 sz s 0 eng d
020
$a
9783030363611
$q
(electronic bk.)
020
$a
9783030363604
$q
(paper)
024
7
$a
10.1007/978-3-030-36361-1
$2
doi
035
$a
978-3-030-36361-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7871.15.M48
$b
M583 2020
072
7
$a
PNFS
$2
bicssc
072
7
$a
SCI077000
$2
bisacsh
072
7
$a
PNFS
$2
thema
082
0 4
$a
620.1126
$2
23
090
$a
TK7871.15.M48
$b
M681 2020
100
1
$a
Mitchell, Noah.
$3
3194901
245
1 0
$a
Geometric control of fracture and topological metamaterials
$h
[electronic resource] /
$c
by Noah Mitchell.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xix, 121 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Chapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook.
520
$a
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
650
0
$a
Metamaterials
$x
Fracture
$x
Mathematics.
$3
3446583
650
1 4
$a
Solid State Physics.
$3
1066374
650
2 4
$a
Optical and Electronic Materials.
$3
891120
650
2 4
$a
Mathematical Methods in Physics.
$3
890898
650
2 4
$a
Phase Transitions and Multiphase Systems.
$3
1066389
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
1314442
856
4 0
$u
https://doi.org/10.1007/978-3-030-36361-1
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9390208
電子資源
11.線上閱覽_V
電子書
EB TK7871.15.M48 M583 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入