語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Model selection and error estimation...
~
Oneto, Luca.
FindBook
Google Book
Amazon
博客來
Model selection and error estimation in a nutshell
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Model selection and error estimation in a nutshell/ by Luca Oneto.
作者:
Oneto, Luca.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xiii, 132 p. :ill., digital ;24 cm.
內容註:
Introduction -- The "Five W" of MS & EE -- Preliminaries -- Resampling Methods -- Complexity-Based Methods -- Compression Bound -- Algorithmic Stability Theory -- PAC-Bayes Theory -- Differential Privacy Theory -- Conclusions & Further Readings.
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-030-24359-3
ISBN:
9783030243593
Model selection and error estimation in a nutshell
Oneto, Luca.
Model selection and error estimation in a nutshell
[electronic resource] /by Luca Oneto. - Cham :Springer International Publishing :2020. - xiii, 132 p. :ill., digital ;24 cm. - Modeling and optimization in science and technologies,v.152196-7326 ;. - Modeling and optimization in science and technologies ;v.15..
Introduction -- The "Five W" of MS & EE -- Preliminaries -- Resampling Methods -- Complexity-Based Methods -- Compression Bound -- Algorithmic Stability Theory -- PAC-Bayes Theory -- Differential Privacy Theory -- Conclusions & Further Readings.
How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
ISBN: 9783030243593
Standard No.: 10.1007/978-3-030-24359-3doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Model selection and error estimation in a nutshell
LDR
:02371nmm a2200337 a 4500
001
2213674
003
DE-He213
005
20200218171150.0
006
m d
007
cr nn 008maaau
008
201117s2020 sz s 0 eng d
020
$a
9783030243593
$q
(electronic bk.)
020
$a
9783030243586
$q
(paper)
024
7
$a
10.1007/978-3-030-24359-3
$2
doi
035
$a
978-3-030-24359-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.O58 2020
100
1
$a
Oneto, Luca.
$3
3442884
245
1 0
$a
Model selection and error estimation in a nutshell
$h
[electronic resource] /
$c
by Luca Oneto.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 132 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Modeling and optimization in science and technologies,
$x
2196-7326 ;
$v
v.15
505
0
$a
Introduction -- The "Five W" of MS & EE -- Preliminaries -- Resampling Methods -- Complexity-Based Methods -- Compression Bound -- Algorithmic Stability Theory -- PAC-Bayes Theory -- Differential Privacy Theory -- Conclusions & Further Readings.
520
$a
How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Computational learning theory.
$3
716541
650
0
$a
Algorithms.
$3
536374
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Modeling and optimization in science and technologies ;
$v
v.15.
$3
3443373
856
4 0
$u
https://doi.org/10.1007/978-3-030-24359-3
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9388587
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入