語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Study of Aerosol-Cloud Interactions ...
~
Gao, Lan.
FindBook
Google Book
Amazon
博客來
Study of Aerosol-Cloud Interactions for Shallow Warm Clouds.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Study of Aerosol-Cloud Interactions for Shallow Warm Clouds./
作者:
Gao, Lan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
166 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-04, Section: B.
Contained By:
Dissertations Abstracts International80-04B.
標題:
Atmospheric sciences. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10930726
ISBN:
9780438428331
Study of Aerosol-Cloud Interactions for Shallow Warm Clouds.
Gao, Lan.
Study of Aerosol-Cloud Interactions for Shallow Warm Clouds.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 166 p.
Source: Dissertations Abstracts International, Volume: 80-04, Section: B.
Thesis (Ph.D.)--University of Nevada, Reno, 2018.
This item must not be sold to any third party vendors.
Cumulus clouds are generally optically thick and shallow, exerting a net cooling impact on the climate system. Changes in atmospheric aerosol conditions, especially aerosol concentration increased by anthropogenic activity, can alter cloud microphysics (e.g., droplet concentration, size distribution) and cloud macrophysics (e.g., liquid water path, cloud morphology), thereby affecting cloud albedo and the Earth's radiation budget. To deepen our understanding of aerosol-cloud-radiation interactions and to investigate the errors (e.g., due to sampling scale, remote sensing artifactual retrieval) in assessing the aerosol effects on shallow cloud and associated radiative forcing, a comprehensive study was performed by utilizing the surface station, in situ aircraft, satellite remote sensing measurements and three-dimensional radiative transfer simulations. The study over the Northern Indian Ocean revealed that more polluted clouds were substantially deeper and narrower with greater cloud liquid water path than less polluted clouds. The observed deeper clouds, mainly due to the warmer, more humid and shallower boundary layer. The narrower clouds formed in high polluted condition were caused by the intensified cloud edge evaporation effect, as a result of more and smaller cloud droplets induced by increasing aerosol concentration. The deeper and narrower clouds embedded in a high concentration of absorbing aerosols over this region contribute to a brighter atmosphere as viewed from space compared to cleaner conditions. As a consequence, the regional negative solar shortwave forcing at the top of the atmosphere due to aerosols increases in magnitude (i.e., greater cooling of regional climate) with increasing aerosol optical depth more than is contributed by just the direct effect of aerosols alone. Aerosol effects on continental shallow warm cloud were investigated by using multiple airborne and spaceborne remote sensing observations. Aerosol-cloud relationships were investigated under different meteorological conditions. Results showed that Cloud responses to aerosols were highly affected by lower tropospheric stability and free troposphere relative humidity. The Aerosol-cloud interaction index (ACI) was generally higher in an unstable and humid environment and lower under unstable and dry conditions. The total top of atmosphere cloud radiative forcing was calculated to be ~ -80 W m-2 when the ACI reached 0.3. Aerosol indirect forcing of the estimated anthropogenic portion of the aerosol due to the intrinsic aerosol effect, i.e., on cloud albedo, was estimated to be -0.63 W m-2 and the forcing due to the extrinsic aerosol effect, i.e., on cloud extent, was estimated to be -1.77 W m-2. The errors due to sampling scale and remote sensing retrieval artifacts in quantifying aerosol indirect effects on shallow warm cloud were investigated by utilizing remote sensing, in situ data and a Monte Carlo Radiative Transfer model (MCRT) designed by the author. The ACI showed a strong scale-dependent behavior, which decreases as data resolution decreases. Smoothing of aerosol and cloud fields from 1 to 10 km produced a decrease of ~ 60% in estimated ACI. The ACI estimated from 1-km resolution remote sensing data was similar to that derived from in-situ aircraft measurements. Analysis of aircraft data revealed that the aerosol humidification effect accounts for a ~ 18.7-21.8% decrease in estimate ACI. The MCRT simulation indicated that the three-dimensional radiative transfer effect from cloud side multiple scattering reduced estimated ACI by ~ 10% for a broken cloud scene. As the coupling among aerosol, cloud, radiation, and the meteorological condition is very complex, the integration of in-situ aircraft measurement, large-scale satellite observation, meteorological reanalysis data, and atmospheric modeling improves our understanding of this complex system.
ISBN: 9780438428331Subjects--Topical Terms:
3168354
Atmospheric sciences.
Study of Aerosol-Cloud Interactions for Shallow Warm Clouds.
LDR
:04953nmm a2200313 4500
001
2210549
005
20191121124237.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438428331
035
$a
(MiAaPQ)AAI10930726
035
$a
(MiAaPQ)unr:12691
035
$a
AAI10930726
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Gao, Lan.
$3
1265227
245
1 0
$a
Study of Aerosol-Cloud Interactions for Shallow Warm Clouds.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
166 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-04, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Wilcox, Eric M.
502
$a
Thesis (Ph.D.)--University of Nevada, Reno, 2018.
506
$a
This item must not be sold to any third party vendors.
520
$a
Cumulus clouds are generally optically thick and shallow, exerting a net cooling impact on the climate system. Changes in atmospheric aerosol conditions, especially aerosol concentration increased by anthropogenic activity, can alter cloud microphysics (e.g., droplet concentration, size distribution) and cloud macrophysics (e.g., liquid water path, cloud morphology), thereby affecting cloud albedo and the Earth's radiation budget. To deepen our understanding of aerosol-cloud-radiation interactions and to investigate the errors (e.g., due to sampling scale, remote sensing artifactual retrieval) in assessing the aerosol effects on shallow cloud and associated radiative forcing, a comprehensive study was performed by utilizing the surface station, in situ aircraft, satellite remote sensing measurements and three-dimensional radiative transfer simulations. The study over the Northern Indian Ocean revealed that more polluted clouds were substantially deeper and narrower with greater cloud liquid water path than less polluted clouds. The observed deeper clouds, mainly due to the warmer, more humid and shallower boundary layer. The narrower clouds formed in high polluted condition were caused by the intensified cloud edge evaporation effect, as a result of more and smaller cloud droplets induced by increasing aerosol concentration. The deeper and narrower clouds embedded in a high concentration of absorbing aerosols over this region contribute to a brighter atmosphere as viewed from space compared to cleaner conditions. As a consequence, the regional negative solar shortwave forcing at the top of the atmosphere due to aerosols increases in magnitude (i.e., greater cooling of regional climate) with increasing aerosol optical depth more than is contributed by just the direct effect of aerosols alone. Aerosol effects on continental shallow warm cloud were investigated by using multiple airborne and spaceborne remote sensing observations. Aerosol-cloud relationships were investigated under different meteorological conditions. Results showed that Cloud responses to aerosols were highly affected by lower tropospheric stability and free troposphere relative humidity. The Aerosol-cloud interaction index (ACI) was generally higher in an unstable and humid environment and lower under unstable and dry conditions. The total top of atmosphere cloud radiative forcing was calculated to be ~ -80 W m-2 when the ACI reached 0.3. Aerosol indirect forcing of the estimated anthropogenic portion of the aerosol due to the intrinsic aerosol effect, i.e., on cloud albedo, was estimated to be -0.63 W m-2 and the forcing due to the extrinsic aerosol effect, i.e., on cloud extent, was estimated to be -1.77 W m-2. The errors due to sampling scale and remote sensing retrieval artifacts in quantifying aerosol indirect effects on shallow warm cloud were investigated by utilizing remote sensing, in situ data and a Monte Carlo Radiative Transfer model (MCRT) designed by the author. The ACI showed a strong scale-dependent behavior, which decreases as data resolution decreases. Smoothing of aerosol and cloud fields from 1 to 10 km produced a decrease of ~ 60% in estimated ACI. The ACI estimated from 1-km resolution remote sensing data was similar to that derived from in-situ aircraft measurements. Analysis of aircraft data revealed that the aerosol humidification effect accounts for a ~ 18.7-21.8% decrease in estimate ACI. The MCRT simulation indicated that the three-dimensional radiative transfer effect from cloud side multiple scattering reduced estimated ACI by ~ 10% for a broken cloud scene. As the coupling among aerosol, cloud, radiation, and the meteorological condition is very complex, the integration of in-situ aircraft measurement, large-scale satellite observation, meteorological reanalysis data, and atmospheric modeling improves our understanding of this complex system.
590
$a
School code: 0139.
650
4
$a
Atmospheric sciences.
$3
3168354
690
$a
0725
710
2
$a
University of Nevada, Reno.
$b
Atmospheric Sciences.
$3
1019574
773
0
$t
Dissertations Abstracts International
$g
80-04B.
790
$a
0139
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10930726
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9387098
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入