語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Catching and Reversing a Quantum Jum...
~
Minev, Zlatko Kristev.
FindBook
Google Book
Amazon
博客來
Catching and Reversing a Quantum Jump Mid-Flight.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Catching and Reversing a Quantum Jump Mid-Flight./
作者:
Minev, Zlatko Kristev.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
195 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-02, Section: B.
Contained By:
Dissertations Abstracts International80-02B.
標題:
Quantum physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10927852
ISBN:
9780438194229
Catching and Reversing a Quantum Jump Mid-Flight.
Minev, Zlatko Kristev.
Catching and Reversing a Quantum Jump Mid-Flight.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 195 p.
Source: Dissertations Abstracts International, Volume: 80-02, Section: B.
Thesis (Ph.D.)--Yale University, 2018.
This item must not be added to any third party search indexes.
A quantum system driven by a weak deterministic force while under strong continuous energy measurement exhibits quantum jumps between its energy levels (Nagourney et al., 1986, Sauter et al., 1986, Bergquist et al., 1986). This celebrated phenomenon is emblematic of the special nature of randomness in quantum physics. The times at which the jumps occur are reputed to be fundamentally unpredictable. However, certain classical phenomena, like tsunamis, while unpredictable in the long term, may possess a degree of predictability in the short term, and in some cases it may be possible to prevent a disaster by detecting an advance warning signal. Can there be, despite the indeterminism of quantum physics, a possibility to know if a quantum jump is about to occur or not? In this dissertation, we answer this question affirmatively by experimentally demonstrating that the completed jump from the ground to an excited state of a superconducting artificial atom can be tracked, as it follows its predictable "flight," by monitoring the population of an auxiliary level coupled to the ground state. Furthermore, we show that the completed jump is continuous, deterministic, and coherent. Exploiting this coherence, we catch and reverse a quantum jump mid-flight, thus preventing its completion. This real-time intervention is based on a particular lull period in the population of the auxiliary level, which serves as our advance warning signal. Our results, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory and provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as early detection of error syndromes.
ISBN: 9780438194229Subjects--Topical Terms:
726746
Quantum physics.
Catching and Reversing a Quantum Jump Mid-Flight.
LDR
:02826nmm a2200325 4500
001
2210522
005
20191121124233.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438194229
035
$a
(MiAaPQ)AAI10927852
035
$a
AAI10927852
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Minev, Zlatko Kristev.
$3
3437661
245
1 0
$a
Catching and Reversing a Quantum Jump Mid-Flight.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
195 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-02, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Devoret, Michel H.
502
$a
Thesis (Ph.D.)--Yale University, 2018.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
A quantum system driven by a weak deterministic force while under strong continuous energy measurement exhibits quantum jumps between its energy levels (Nagourney et al., 1986, Sauter et al., 1986, Bergquist et al., 1986). This celebrated phenomenon is emblematic of the special nature of randomness in quantum physics. The times at which the jumps occur are reputed to be fundamentally unpredictable. However, certain classical phenomena, like tsunamis, while unpredictable in the long term, may possess a degree of predictability in the short term, and in some cases it may be possible to prevent a disaster by detecting an advance warning signal. Can there be, despite the indeterminism of quantum physics, a possibility to know if a quantum jump is about to occur or not? In this dissertation, we answer this question affirmatively by experimentally demonstrating that the completed jump from the ground to an excited state of a superconducting artificial atom can be tracked, as it follows its predictable "flight," by monitoring the population of an auxiliary level coupled to the ground state. Furthermore, we show that the completed jump is continuous, deterministic, and coherent. Exploiting this coherence, we catch and reverse a quantum jump mid-flight, thus preventing its completion. This real-time intervention is based on a particular lull period in the population of the auxiliary level, which serves as our advance warning signal. Our results, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory and provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as early detection of error syndromes.
590
$a
School code: 0265.
650
4
$a
Quantum physics.
$3
726746
650
4
$a
Physics.
$3
516296
690
$a
0599
690
$a
0605
710
2
$a
Yale University.
$3
515640
773
0
$t
Dissertations Abstracts International
$g
80-02B.
790
$a
0265
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10927852
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9387071
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入