語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonparametric prediction intervals.
~
Zhou, Lan.
FindBook
Google Book
Amazon
博客來
Nonparametric prediction intervals.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonparametric prediction intervals./
作者:
Zhou, Lan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 1997,
面頁冊數:
100 p.
附註:
Source: Dissertations Abstracts International, Volume: 60-01, Section: B.
Contained By:
Dissertations Abstracts International60-01B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9827173
ISBN:
9780591795233
Nonparametric prediction intervals.
Zhou, Lan.
Nonparametric prediction intervals.
- Ann Arbor : ProQuest Dissertations & Theses, 1997 - 100 p.
Source: Dissertations Abstracts International, Volume: 60-01, Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 1997.
This item must not be sold to any third party vendors.
Prediction intervals are useful statistical tools in understanding the uncertainty of future happenings. Nonparametric prediction intervals provide inferences without requiring specific parametric assumptions about the sampling distribution. As the unified theme of this thesis, we pursue a theoretical investigation of nonparametric prediction intervals. Two major construction principles, controlling overall coverage probability and controlling conditional coverage probability given the learning sample, are reviewed. The relationship between the nonparametric prediction intervals and the nonparametric confidence intervals is studied in Chapter 2. Chapter 3 compares the two construction principles and various methods for i. i. d. observations. We give the asymptotic properties of the constructed prediction intervals and in addition, we obtain a local asymptotic minimax bound for conditional coverage probabilities. Chapter 4 focuses on the nonparametric prediction intervals in stationary time series. We propose a way of constructing the prediction interval by controlling the conditional coverage probability given the observed sample and show that such an interval is asymptotically correct. The limiting distribution of the conditional coverage probability is also obtained in the context of stationary autoregressive models.
ISBN: 9780591795233Subjects--Topical Terms:
517247
Statistics.
Nonparametric prediction intervals.
LDR
:02396nmm a2200313 4500
001
2208258
005
20191009102936.5
008
201008s1997 ||||||||||||||||| ||eng d
020
$a
9780591795233
035
$a
(MiAaPQ)AAI9827173
035
$a
AAI9827173
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhou, Lan.
$3
3174283
245
1 0
$a
Nonparametric prediction intervals.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
1997
300
$a
100 p.
500
$a
Source: Dissertations Abstracts International, Volume: 60-01, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Beran, Rudolph.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 1997.
506
$a
This item must not be sold to any third party vendors.
506
$a
This item must not be added to any third party search indexes.
520
$a
Prediction intervals are useful statistical tools in understanding the uncertainty of future happenings. Nonparametric prediction intervals provide inferences without requiring specific parametric assumptions about the sampling distribution. As the unified theme of this thesis, we pursue a theoretical investigation of nonparametric prediction intervals. Two major construction principles, controlling overall coverage probability and controlling conditional coverage probability given the learning sample, are reviewed. The relationship between the nonparametric prediction intervals and the nonparametric confidence intervals is studied in Chapter 2. Chapter 3 compares the two construction principles and various methods for i. i. d. observations. We give the asymptotic properties of the constructed prediction intervals and in addition, we obtain a local asymptotic minimax bound for conditional coverage probabilities. Chapter 4 focuses on the nonparametric prediction intervals in stationary time series. We propose a way of constructing the prediction interval by controlling the conditional coverage probability given the observed sample and show that such an interval is asymptotically correct. The limiting distribution of the conditional coverage probability is also obtained in the context of stationary autoregressive models.
590
$a
School code: 0028.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
University of California, Berkeley.
$3
687832
773
0
$t
Dissertations Abstracts International
$g
60-01B.
790
$a
0028
791
$a
Ph.D.
792
$a
1997
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9827173
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9384807
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入