語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Model-based Imputation for Multileve...
~
Keller, Brian Tinnell.
FindBook
Google Book
Amazon
博客來
Model-based Imputation for Multilevel Interaction Effects.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Model-based Imputation for Multilevel Interaction Effects./
作者:
Keller, Brian Tinnell.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
137 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13897066
ISBN:
9781392236550
Model-based Imputation for Multilevel Interaction Effects.
Keller, Brian Tinnell.
Model-based Imputation for Multilevel Interaction Effects.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 137 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2019.
This item must not be sold to any third party vendors.
Over the last few decades, a large body of research supports the use of multiple imputation as a method for handling missing data. Despite imputation's broad appeal, the method is known to introduce biases when applied to models with interactive and polynomial effects. In the context of single-level regression models, multiple imputation based on a fully Bayesian model specification has shown great promise, but limited research to date has considered this approach for multilevel models. The purpose of this dissertation is to investigate the multilevel extension of Bayesian model-based imputation to a two-level regression model with a cross-level interactive effect.With the exception of some rather extreme scenarios with non- normal data, computer simulations from this research suggest that the model-based approach can effectively estimate these models in a wide variety of conditions that are typical of social and behavioral science research data. In virtually every condition examined, model-based imputation outperformed existing alternatives to handling incomplete interactive effects. This procedure is available in the Blimp software package for macOS, Windows, and Linux.
ISBN: 9781392236550Subjects--Topical Terms:
517247
Statistics.
Model-based Imputation for Multilevel Interaction Effects.
LDR
:02253nmm a2200325 4500
001
2207699
005
20190920102404.5
008
201008s2019 ||||||||||||||||| ||eng d
020
$a
9781392236550
035
$a
(MiAaPQ)AAI13897066
035
$a
(MiAaPQ)ucla:17827
035
$a
AAI13897066
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Keller, Brian Tinnell.
$3
3434686
245
1 0
$a
Model-based Imputation for Multilevel Interaction Effects.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
137 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Enders, Craig K.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Over the last few decades, a large body of research supports the use of multiple imputation as a method for handling missing data. Despite imputation's broad appeal, the method is known to introduce biases when applied to models with interactive and polynomial effects. In the context of single-level regression models, multiple imputation based on a fully Bayesian model specification has shown great promise, but limited research to date has considered this approach for multilevel models. The purpose of this dissertation is to investigate the multilevel extension of Bayesian model-based imputation to a two-level regression model with a cross-level interactive effect.With the exception of some rather extreme scenarios with non- normal data, computer simulations from this research suggest that the model-based approach can effectively estimate these models in a wide variety of conditions that are typical of social and behavioral science research data. In virtually every condition examined, model-based imputation outperformed existing alternatives to handling incomplete interactive effects. This procedure is available in the Blimp software package for macOS, Windows, and Linux.
590
$a
School code: 0031.
650
4
$a
Statistics.
$3
517247
650
4
$a
Quantitative psychology.
$3
2144748
690
$a
0463
690
$a
0632
710
2
$a
University of California, Los Angeles.
$b
Psychology 0780.
$3
2095732
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0031
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13897066
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9384248
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入