語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Stokes, Gauss, and Bayes Walk into a...
~
Kightley, E.P.
FindBook
Google Book
Amazon
博客來
Stokes, Gauss, and Bayes Walk into a Bar ..
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Stokes, Gauss, and Bayes Walk into a Bar ../
作者:
Kightley, E.P.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
105 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Applied Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13857020
ISBN:
9781392164952
Stokes, Gauss, and Bayes Walk into a Bar ..
Kightley, E.P.
Stokes, Gauss, and Bayes Walk into a Bar ..
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 105 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
This item must not be sold to any third party vendors.
This thesis consists of three distinct projects. The first is a study of microbial aggregate fragmentation, in which we develop a dynamical model of aggregate deformation and breakage and use it to obtain a post-fragmentation density function. The second and third projects deal with dimensionality reduction in machine learning problems. In the second project, we derive a one-pass sparsified Gaussian mixture model to perform clustering analysis on high-dimensional streaming data. The model estimates parameters in dense space while storing and performing computations in a compressed space. In the final project, we build an expert system classifier with a Bayesian network for use on high-volume streaming data. Our approach is specialized to reduce the number of observations while obtaining sufficient labeled training data in a regime of extreme class-imbalance and expensive oracle queries.
ISBN: 9781392164952Subjects--Topical Terms:
1669109
Applied Mathematics.
Stokes, Gauss, and Bayes Walk into a Bar ..
LDR
:01968nmm a2200337 4500
001
2207118
005
20190913102452.5
008
201008s2019 ||||||||||||||||| ||eng d
020
$a
9781392164952
035
$a
(MiAaPQ)AAI13857020
035
$a
(MiAaPQ)colorado:15916
035
$a
AAI13857020
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kightley, E.P.
$3
3434057
245
1 0
$a
Stokes, Gauss, and Bayes Walk into a Bar ..
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
105 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Becker, Stephen.
502
$a
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
This thesis consists of three distinct projects. The first is a study of microbial aggregate fragmentation, in which we develop a dynamical model of aggregate deformation and breakage and use it to obtain a post-fragmentation density function. The second and third projects deal with dimensionality reduction in machine learning problems. In the second project, we derive a one-pass sparsified Gaussian mixture model to perform clustering analysis on high-dimensional streaming data. The model estimates parameters in dense space while storing and performing computations in a compressed space. In the final project, we build an expert system classifier with a Bayesian network for use on high-volume streaming data. Our approach is specialized to reduce the number of observations while obtaining sufficient labeled training data in a regime of extreme class-imbalance and expensive oracle queries.
590
$a
School code: 0051.
650
4
$a
Applied Mathematics.
$3
1669109
650
4
$a
Statistics.
$3
517247
650
4
$a
Artificial intelligence.
$3
516317
690
$a
0364
690
$a
0463
690
$a
0800
710
2
$a
University of Colorado at Boulder.
$b
Applied Mathematics.
$3
1030307
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0051
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13857020
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9383667
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入