Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Scalable Learning and Energy Managem...
~
Zhang, Liang.
Linked to FindBook
Google Book
Amazon
博客來
Scalable Learning and Energy Management for Power Grids.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Scalable Learning and Energy Management for Power Grids./
Author:
Zhang, Liang.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
Description:
130 p.
Notes:
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Contained By:
Dissertations Abstracts International80-09B.
Subject:
Electrical engineering. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13427175
ISBN:
9780438961937
Scalable Learning and Energy Management for Power Grids.
Zhang, Liang.
Scalable Learning and Energy Management for Power Grids.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 130 p.
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Thesis (Ph.D.)--University of Minnesota, 2019.
This item must not be sold to any third party vendors.
Contemporary power grids are being challenged by unprecedented levels of voltage fluctuations, due to large-scale deployment of electric vehicles (EVs), demand-response programs, and renewable generation. Nonetheless, with proper coordination, EVs and responsive demands can be controlled to enhance grid efficiency and reliability by leveraging advances in power electronics, metering, and communication modules. In this context, the present thesis pioneers algorithmic innovations targeting timely opportunities emerging with future power systems in terms of learning, load control, and microgrid management. Our vision is twofold: advancing algorithms and their performance analysis, while contributing foundational developments to guarantee situational awareness, efficiency, and scalability of forthcoming smart power grids. The first thrust to this end deals with real-time power grid monitoring that comprises power system state estimation (PSSE), state forecasting, and topology identification modules. Due to the intrinsic nonconvexity of the PSSE task, optimal PSSE approaches have been either sensitive to initialization or computationally expensive. To bypass these hurdles, this thesis advocates deep neural networks (DNNs) for real-time PSSE. By unrolling an iterative physics-based prox-linear PSSE solver, a novel model-specific DNN with affordable training and minimal tuning effort is developed. To further enable system awareness even ahead of the time horizon, as well as to endow the DNN-based estimator with resilience, deep recurrent neural networks (RNNs) are also pursued for state forecasting. Deep RNNs leverage the long-term nonlinear dependencies present in the historical voltage time series to enable forecasting, and they are easy to implement. Finally, multi-kernel learning based partial correlations accounting for nonlinear dependencies between given nodal measurements are leveraged to unveil connectivity of power grids. The second thrust leverages the obtained state and topology information to design optimal load control and microgrid management schemes. With regards to EV load control, a decentralized protocol relying on the Frank-Wolfe algorithm is put forth to manage the heterogeneous charging loads. The novel paradigm has minimal computational requirements, and is resilient to lost updates. When higher levels of EV load exceed prescribed voltage limits, the underlying grid needs to be taken into account. In this context, communication-free local reactive power control and optimal decentralized energy management schemes, are developed based on the proximal gradient method and the alternating direction method of multipliers, respectively.
ISBN: 9780438961937Subjects--Topical Terms:
649834
Electrical engineering.
Scalable Learning and Energy Management for Power Grids.
LDR
:03742nmm a2200325 4500
001
2205811
005
20190828135955.5
008
201008s2019 ||||||||||||||||| ||eng d
020
$a
9780438961937
035
$a
(MiAaPQ)AAI13427175
035
$a
(MiAaPQ)umn:20023
035
$a
AAI13427175
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Liang.
$3
1613704
245
1 0
$a
Scalable Learning and Energy Management for Power Grids.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
130 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Giannakis, Georgios B.
502
$a
Thesis (Ph.D.)--University of Minnesota, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Contemporary power grids are being challenged by unprecedented levels of voltage fluctuations, due to large-scale deployment of electric vehicles (EVs), demand-response programs, and renewable generation. Nonetheless, with proper coordination, EVs and responsive demands can be controlled to enhance grid efficiency and reliability by leveraging advances in power electronics, metering, and communication modules. In this context, the present thesis pioneers algorithmic innovations targeting timely opportunities emerging with future power systems in terms of learning, load control, and microgrid management. Our vision is twofold: advancing algorithms and their performance analysis, while contributing foundational developments to guarantee situational awareness, efficiency, and scalability of forthcoming smart power grids. The first thrust to this end deals with real-time power grid monitoring that comprises power system state estimation (PSSE), state forecasting, and topology identification modules. Due to the intrinsic nonconvexity of the PSSE task, optimal PSSE approaches have been either sensitive to initialization or computationally expensive. To bypass these hurdles, this thesis advocates deep neural networks (DNNs) for real-time PSSE. By unrolling an iterative physics-based prox-linear PSSE solver, a novel model-specific DNN with affordable training and minimal tuning effort is developed. To further enable system awareness even ahead of the time horizon, as well as to endow the DNN-based estimator with resilience, deep recurrent neural networks (RNNs) are also pursued for state forecasting. Deep RNNs leverage the long-term nonlinear dependencies present in the historical voltage time series to enable forecasting, and they are easy to implement. Finally, multi-kernel learning based partial correlations accounting for nonlinear dependencies between given nodal measurements are leveraged to unveil connectivity of power grids. The second thrust leverages the obtained state and topology information to design optimal load control and microgrid management schemes. With regards to EV load control, a decentralized protocol relying on the Frank-Wolfe algorithm is put forth to manage the heterogeneous charging loads. The novel paradigm has minimal computational requirements, and is resilient to lost updates. When higher levels of EV load exceed prescribed voltage limits, the underlying grid needs to be taken into account. In this context, communication-free local reactive power control and optimal decentralized energy management schemes, are developed based on the proximal gradient method and the alternating direction method of multipliers, respectively.
590
$a
School code: 0130.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Computer science.
$3
523869
690
$a
0544
690
$a
0984
710
2
$a
University of Minnesota.
$b
Electrical Engineering.
$3
1018776
773
0
$t
Dissertations Abstracts International
$g
80-09B.
790
$a
0130
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13427175
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9382360
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login