語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feature Extraction in Image Processi...
~
Li, Yiran.
FindBook
Google Book
Amazon
博客來
Feature Extraction in Image Processing and Deep Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Feature Extraction in Image Processing and Deep Learning./
作者:
Li, Yiran.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
142 p.
附註:
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
Contained By:
Dissertation Abstracts International79-12B(E).
標題:
Applied mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10791649
ISBN:
9780438183162
Feature Extraction in Image Processing and Deep Learning.
Li, Yiran.
Feature Extraction in Image Processing and Deep Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 142 p.
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
Thesis (Ph.D.)--University of Maryland, College Park, 2018.
This thesis develops theoretical analysis of the approximation properties of neural networks, and algorithms to extract useful features of images in fields of deep learning, quantum energy regression and cancer image analysis. The separate applications are connected by using representation systems in harmonic analysis; we focus on deriving proper representations of data using Gabor transform in this thesis. A novel neural network with proven approximation properties dependent on its size is developed using Gabor system. In quantum energy regression, invariant representation of chemical molecules using electron densities is obtained based on the Gabor transform. Additionally, we dig into pooling functions, the feature extractor in deep neural networks, and develop a novel pooling strategy originated from the maximal function with stability property and stable performance. Anisotropic representation of data using the Shearlet transform is also explored in its ability to detect regions of interests of nuclei in cancer images.
ISBN: 9780438183162Subjects--Topical Terms:
2122814
Applied mathematics.
Feature Extraction in Image Processing and Deep Learning.
LDR
:01955nmm a2200289 4500
001
2205185
005
20190717110304.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438183162
035
$a
(MiAaPQ)AAI10791649
035
$a
(MiAaPQ)umd:18973
035
$a
AAI10791649
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Li, Yiran.
$0
(orcid)0000-0001-5972-8440
$3
3432049
245
1 0
$a
Feature Extraction in Image Processing and Deep Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
142 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500
$a
Adviser: Wojciech Czaja.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2018.
520
$a
This thesis develops theoretical analysis of the approximation properties of neural networks, and algorithms to extract useful features of images in fields of deep learning, quantum energy regression and cancer image analysis. The separate applications are connected by using representation systems in harmonic analysis; we focus on deriving proper representations of data using Gabor transform in this thesis. A novel neural network with proven approximation properties dependent on its size is developed using Gabor system. In quantum energy regression, invariant representation of chemical molecules using electron densities is obtained based on the Gabor transform. Additionally, we dig into pooling functions, the feature extractor in deep neural networks, and develop a novel pooling strategy originated from the maximal function with stability property and stable performance. Anisotropic representation of data using the Shearlet transform is also explored in its ability to detect regions of interests of nuclei in cancer images.
590
$a
School code: 0117.
650
4
$a
Applied mathematics.
$3
2122814
690
$a
0364
710
2
$a
University of Maryland, College Park.
$b
Applied Mathematics and Scientific Computation.
$3
1021743
773
0
$t
Dissertation Abstracts International
$g
79-12B(E).
790
$a
0117
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10791649
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9381734
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入