語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multiqubit Tunneling and Evolution i...
~
Brady, Lucas T.
FindBook
Google Book
Amazon
博客來
Multiqubit Tunneling and Evolution in Quantum Annealing.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multiqubit Tunneling and Evolution in Quantum Annealing./
作者:
Brady, Lucas T.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
148 p.
附註:
Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
Contained By:
Dissertation Abstracts International80-02B(E).
標題:
Physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10829248
ISBN:
9780438416925
Multiqubit Tunneling and Evolution in Quantum Annealing.
Brady, Lucas T.
Multiqubit Tunneling and Evolution in Quantum Annealing.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 148 p.
Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
Thesis (Ph.D.)--University of California, Santa Barbara, 2018.
Quantum computing seeks to use the powers of quantum mechanics to accomplish tasks that classical computers cannot easily accomplish. Adiabatic quantum computing is one flavor of quantum computing that slowly changes a system with time in such a way that the state remains close to the ground state for the entire evolution. An easy way to implement and study adiabatic computing is using stoquastic Hamiltonians with no-sign problem. These Hamiltonians can be readily simulated on classical computers using quantum Monte Carlo schemes; though, it is unknown whether such simulation captures the speed and power of the quantum computation.
ISBN: 9780438416925Subjects--Topical Terms:
516296
Physics.
Multiqubit Tunneling and Evolution in Quantum Annealing.
LDR
:03288nmm a2200349 4500
001
2202746
005
20190513114839.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438416925
035
$a
(MiAaPQ)AAI10829248
035
$a
(MiAaPQ)ucsb:13927
035
$a
AAI10829248
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Brady, Lucas T.
$3
3429515
245
1 0
$a
Multiqubit Tunneling and Evolution in Quantum Annealing.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
148 p.
500
$a
Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
500
$a
Adviser: Wim van Dam.
502
$a
Thesis (Ph.D.)--University of California, Santa Barbara, 2018.
520
$a
Quantum computing seeks to use the powers of quantum mechanics to accomplish tasks that classical computers cannot easily accomplish. Adiabatic quantum computing is one flavor of quantum computing that slowly changes a system with time in such a way that the state remains close to the ground state for the entire evolution. An easy way to implement and study adiabatic computing is using stoquastic Hamiltonians with no-sign problem. These Hamiltonians can be readily simulated on classical computers using quantum Monte Carlo schemes; though, it is unknown whether such simulation captures the speed and power of the quantum computation.
520
$a
In this work, I study stoquastic Hamiltonians, focusing on quantum mechanical tunneling through classically inaccessible regions and barriers. I study multi-qubit tunneling problems to determine what properties of the barrier make this problem quantum mechanically or classically hard or inefficient. I compare quantum adiabatic computing with a path-integral Quantum Monte Carlo algorithm, which is a classical algorithm designed to simulate the quantum mechanical dynamics of the adiabatic evolution. Limited numerical data shows strong correlation between adiabatic and Monte Carlo runtimes, but due to computational limits, only small system sizes could be sampled.
520
$a
Additionally, I study the properties of the quantum adiabatic algorithm in both the asymptotic limit of a large number of qubits and long runtimes and more realistic finite system sizes and non-adiabatic conditions. I develop a modification of the existing Villain transformation that allows it to find the asymptotic running time of the quantum evolution for different barrier sizes. Furthermore, I compare this to finite system sizes and discover the extremely large numbers of qubits are needed for these asymptotics to be useful.
520
$a
When the quantum dynamics are run faster than adiabatically, new behavior arises that could potentially lead to enhancements in the quantum runtimes. I explore these enhancements, discovering when they do and do not occur. I also develop a broad framework for determining the nature of the near-adiabatic behavior of any quantum evolution, using only information about the energy gap between the ground state and the first excited state.
590
$a
School code: 0035.
650
4
$a
Physics.
$3
516296
650
4
$a
Quantum physics.
$3
726746
650
4
$a
Theoretical physics.
$3
2144760
690
$a
0605
690
$a
0599
690
$a
0753
710
2
$a
University of California, Santa Barbara.
$b
Physics.
$3
1020469
773
0
$t
Dissertation Abstracts International
$g
80-02B(E).
790
$a
0035
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10829248
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9379295
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入