語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning Approaches to Star-...
~
Kim, Junhyung.
FindBook
Google Book
Amazon
博客來
Machine Learning Approaches to Star-Galaxy Classification.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine Learning Approaches to Star-Galaxy Classification./
作者:
Kim, Junhyung.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
156 p.
附註:
Source: Dissertation Abstracts International, Volume: 80-05(E), Section: B.
Contained By:
Dissertation Abstracts International80-05B(E).
標題:
Astronomy. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13804762
ISBN:
9780438730809
Machine Learning Approaches to Star-Galaxy Classification.
Kim, Junhyung.
Machine Learning Approaches to Star-Galaxy Classification.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 156 p.
Source: Dissertation Abstracts International, Volume: 80-05(E), Section: B.
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2018.
Accurate star-galaxy classification has many important applications in modern precision cosmology. However, a vast number of faint sources that are detected in the current and next-generation ground-based surveys may be challenged by poor star-galaxy classification. Thus, we explore a variety of machine learning approaches to improve star-galaxy classification in ground-based photometric surveys. In Chapter 2, we present a meta-classification framework that combines existing star-galaxy classifiers, and demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method. In Chapter 3, we show that a deep learning algorithm called convolutional neural networks is able to produce accurate and well-calibrated classifications by learning directly from the pixel values of photometric images. In Chapter 4, we study another deep learning technique called generative adversarial networks in a semi-supervised setting, and demonstrate that our semi-supervised method produces competitive classifications using only a small amount of labeled examples.
ISBN: 9780438730809Subjects--Topical Terms:
517668
Astronomy.
Machine Learning Approaches to Star-Galaxy Classification.
LDR
:02074nmm a2200313 4500
001
2201410
005
20190429062349.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438730809
035
$a
(MiAaPQ)AAI13804762
035
$a
(MiAaPQ)100895
035
$a
AAI13804762
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kim, Junhyung.
$3
1036009
245
1 0
$a
Machine Learning Approaches to Star-Galaxy Classification.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
156 p.
500
$a
Source: Dissertation Abstracts International, Volume: 80-05(E), Section: B.
500
$a
Adviser: Jon J. Thaler.
502
$a
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2018.
520
$a
Accurate star-galaxy classification has many important applications in modern precision cosmology. However, a vast number of faint sources that are detected in the current and next-generation ground-based surveys may be challenged by poor star-galaxy classification. Thus, we explore a variety of machine learning approaches to improve star-galaxy classification in ground-based photometric surveys. In Chapter 2, we present a meta-classification framework that combines existing star-galaxy classifiers, and demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method. In Chapter 3, we show that a deep learning algorithm called convolutional neural networks is able to produce accurate and well-calibrated classifications by learning directly from the pixel values of photometric images. In Chapter 4, we study another deep learning technique called generative adversarial networks in a semi-supervised setting, and demonstrate that our semi-supervised method produces competitive classifications using only a small amount of labeled examples.
590
$a
School code: 0090.
650
4
$a
Astronomy.
$3
517668
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Statistics.
$3
517247
690
$a
0606
690
$a
0800
690
$a
0463
710
2
$a
University of Illinois at Urbana-Champaign.
$b
Physics.
$3
3170744
773
0
$t
Dissertation Abstracts International
$g
80-05B(E).
790
$a
0090
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13804762
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9377959
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入