語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Microstructuring of Nickel Thin Film...
~
Itapu, Srikanth.
FindBook
Google Book
Amazon
博客來
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation./
作者:
Itapu, Srikanth.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
135 p.
附註:
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Contained By:
Dissertation Abstracts International79-08B(E).
標題:
Physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10800995
ISBN:
9780355790498
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation.
Itapu, Srikanth.
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 135 p.
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Thesis (Ph.D.)--The University of Toledo, 2017.
In recent years, low-cost and high-performance compact integrated circuit (IC) components have begun to play a significant role in enhancing circuit performance. One of many such components include on-chip inductors which often consume large area for moderate inductance (L) values and have relatively low-quality factor (Q). Besides reducing the physical circuitry of IC components, enhanced L and Q are also required in radio-frequency (RF) applications. Various approaches to overcome such limitations have been explored in recent years, such as incorporating magnetic materials, laminating and patterning ferromagnetic thin films, utilizing in-plane and out-of-plane anisotropy to enhance magnetic fields, patterning ground shields, fabricating multi-layers of magnetic thin film, etc. In this dissertation, we report on the possibility of forming microbump structures on films of magnetic metals, such as nickel (Ni), by single-pulse localized laser irradiation. Microstructuring on various metal films have been studied and different theoretical models have been proposed in recent years. We identified laser, geometry, and film quality conditions under which fabrication of such microstructures is possible and then examined this technique as a method to improve/enhance the L and Q of on-chip spiral inductors. The nanosecond pulsed-laser irradiation technique offers the advantage of localized thermal heating, noncontact nature and high throughput as compared to conventional microstructuring methods.
ISBN: 9780355790498Subjects--Topical Terms:
516296
Physics.
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation.
LDR
:06606nmm a2200349 4500
001
2201071
005
20190329144318.5
008
201008s2017 ||||||||||||||||| ||eng d
020
$a
9780355790498
035
$a
(MiAaPQ)AAI10800995
035
$a
(MiAaPQ)OhioLINK:toledo1501701523725736
035
$a
AAI10800995
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Itapu, Srikanth.
$3
3427797
245
1 0
$a
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser Irradiation.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
135 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
502
$a
Thesis (Ph.D.)--The University of Toledo, 2017.
520
$a
In recent years, low-cost and high-performance compact integrated circuit (IC) components have begun to play a significant role in enhancing circuit performance. One of many such components include on-chip inductors which often consume large area for moderate inductance (L) values and have relatively low-quality factor (Q). Besides reducing the physical circuitry of IC components, enhanced L and Q are also required in radio-frequency (RF) applications. Various approaches to overcome such limitations have been explored in recent years, such as incorporating magnetic materials, laminating and patterning ferromagnetic thin films, utilizing in-plane and out-of-plane anisotropy to enhance magnetic fields, patterning ground shields, fabricating multi-layers of magnetic thin film, etc. In this dissertation, we report on the possibility of forming microbump structures on films of magnetic metals, such as nickel (Ni), by single-pulse localized laser irradiation. Microstructuring on various metal films have been studied and different theoretical models have been proposed in recent years. We identified laser, geometry, and film quality conditions under which fabrication of such microstructures is possible and then examined this technique as a method to improve/enhance the L and Q of on-chip spiral inductors. The nanosecond pulsed-laser irradiation technique offers the advantage of localized thermal heating, noncontact nature and high throughput as compared to conventional microstructuring methods.
520
$a
In order to exploit the advantages of laser microstructuring, we modeled an inductor stack with copper as inductor layer over a silica substrate. Various ferromagnetic thin film materials (Ni, Co, Fe, ferrite, permalloy) were introduced and studied as a function of thickness and material properties. The microstructuring was then modeled as equivalent hemispherical structures and studied in detail as a function of microstructure density and diameter of the microstructure. A significant increase in L and Q was observed due to the ferromagnetic material as well as the microstructuring. To verify the simulated results, a 0.8cm x 1 cm inductor stack consisting of Ni/SiO2/Cu on glass substrate is fabricated and laser assisted microstructuring is performed on Ni thin film deposited by sputtering and evaporation. For Ni film deposited by RF sputtering, a grain structure with a fine network of inter-grain gaps (or cracks) were observed from the SEM images. These inter-grain gaps result in poor heat conduction laterally and vertically, thus hindering the microbump formation. Hence, smooth Ni films were obtained by vacuum evaporation. The continuous nature of the film material (vs voids and cracks in the sputtered film case) resulted in radially symmetric thermal expansion and deformation the amount of which can be controlled (within certain limits) by the laser pulse energy. Hence, for the inductor stack with evaporated Ni thin film, a 7% increase in L and 9% increase in Q is observed when microstructuring is performed on 12% of the total inductor area. For a further increase in the microstructuring to 19 % of the total inductor area, a 9% increae in L and 10% increase in Q is observed.
520
$a
Similarly, recent studies indicate an exciting research in wide bandgap transition metal oxide semiconductors such as NiO to enhance room temperature ferromagnetism for multiferroic devices, supercapacitor application and resistive switching. Dopants such Cu, Li enhance the p-type conductivity of NiO films and have been studied extensively, both theoretically and experimentally. Hence, the effect of ultraviolet (UV) laser irradiation on the structural, electrical, and optical properties of nickel oxide (NiOx) thin films, deposited by reactive sputtering of nickel in an oxygen containing atmosphere was studied. It was found that the conduction type can be changed from p-type to n-type and the resistivity decreased as the number of laser pulses is increased. The as-deposited films are polycrystalline, while laser irradiation renders the films amorphous. The observed transition from O-rich NiOx as-deposited films to Ni-rich laser– irradiated NiOx can be significant to resistive switching and other applications. The band gap of the as-deposited and the laser irradiated NiOx films was obtained from spectroscopic ellipsometry measurements and was found to slightly increase upon laser irradiation. It was also observed that the surface roughness increases slightly.
520
$a
Doping NiO with transition metals such as Fe, Zr and lanthanide metals such as La were studied experimentally, but no theoretical analysis has been investigated in knowing the vacancy and interstitial behavior in doped NiO. In this dissertation, we study the effect of doping transition metals belonging to the nickel family, i.e. Pd and Pt on the properties of NiO. An equivalent model to mimic the effects of laser irradiation on the native defects of NiO was also developed by studying the Ni16O16 in a 32 cell structure. A comprehensive study of varying the doping concentration in NiO was performed as a result of which the density of states (DOS) calculations revealed a decrease in the bandgap of Pd-doped NiO from 3.8eV for 3% Pd doping to 2.5eV for 20% Pd in NiO. Similarly, for the case of Pt-doped NiO, a decrease in the bandgap from 2.5 eV for 3% Pt doping to 2eV for 20% Pt doping is observed. The substitution of Ni3+ ions in NiO by Pd3+ and Pt3+ ions respectively, results in a decrease in the lattice constant as compared to undoped NiO.
590
$a
School code: 0232.
650
4
$a
Physics.
$3
516296
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Materials science.
$3
543314
650
4
$a
Electromagnetics.
$3
3173223
690
$a
0605
690
$a
0544
690
$a
0794
690
$a
0607
710
2
$a
The University of Toledo.
$b
Electrical Engineering.
$3
3170575
773
0
$t
Dissertation Abstracts International
$g
79-08B(E).
790
$a
0232
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10800995
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9377620
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入