語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Investigating Marine Resources in th...
~
Kilborn, Joshua Paul.
FindBook
Google Book
Amazon
博客來
Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry./
作者:
Kilborn, Joshua Paul.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
209 p.
附註:
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Contained By:
Dissertation Abstracts International79-03B(E).
標題:
Biological oceanography. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10680352
ISBN:
9780355522822
Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry.
Kilborn, Joshua Paul.
Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 209 p.
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Thesis (Ph.D.)--University of South Florida, 2017.
The work in this dissertation represents an attempt to investigate multiple temporal and spatial scales of inquiry relating to the variability of marine resources throughout the Gulf of Mexico large marine ecosystem (Gulf LME). This effort was undertaken over two spatial extents within the greater Gulf LME using two different time-series of fisheries monitoring data. Case studies demonstrating simple frameworks and best practices are presented with the aim of aiding researchers seeking to reduce errors and biases in scientific decision making. Two of the studies focused on three years of groundfish survey data collected across the West Florida Shelf (WFS), an ecosystem that occupies the eastern portion of the Gulf LME and which spans the entire latitudinal extent of the state of Florida. A third study was related to the entire area covered by the Gulf LME, and explored a 30-year dataset containing over 100 long-term monitoring time-series of indicators representing (1) fisheries resource status and structure, (2) human use patterns and resource extractions, and (3) large- and small-scale environmental and climatological characteristics. Finally, a fourth project involved testing the reliability of a popular new clustering algorithm in ecology using data simulation techniques.
ISBN: 9780355522822Subjects--Topical Terms:
2122748
Biological oceanography.
Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry.
LDR
:06313nmm a2200337 4500
001
2200478
005
20190315110956.5
008
201008s2017 ||||||||||||||||| ||eng d
020
$a
9780355522822
035
$a
(MiAaPQ)AAI10680352
035
$a
(MiAaPQ)usf:14541
035
$a
AAI10680352
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kilborn, Joshua Paul.
$3
3427228
245
1 0
$a
Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
209 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
500
$a
Advisers: David F. Naar; Ernst B. Peebles.
502
$a
Thesis (Ph.D.)--University of South Florida, 2017.
520
$a
The work in this dissertation represents an attempt to investigate multiple temporal and spatial scales of inquiry relating to the variability of marine resources throughout the Gulf of Mexico large marine ecosystem (Gulf LME). This effort was undertaken over two spatial extents within the greater Gulf LME using two different time-series of fisheries monitoring data. Case studies demonstrating simple frameworks and best practices are presented with the aim of aiding researchers seeking to reduce errors and biases in scientific decision making. Two of the studies focused on three years of groundfish survey data collected across the West Florida Shelf (WFS), an ecosystem that occupies the eastern portion of the Gulf LME and which spans the entire latitudinal extent of the state of Florida. A third study was related to the entire area covered by the Gulf LME, and explored a 30-year dataset containing over 100 long-term monitoring time-series of indicators representing (1) fisheries resource status and structure, (2) human use patterns and resource extractions, and (3) large- and small-scale environmental and climatological characteristics. Finally, a fourth project involved testing the reliability of a popular new clustering algorithm in ecology using data simulation techniques.
520
$a
The work in Chapter Two, focused on the WFS, describes a quantitatively defensible technique to define daytime and nighttime groundfish assemblages, based on the nautical twilight starting and ending times at a sampling station. It also describes the differences between these two unique diel communities, the indicator species that comprise them, and environmental drivers that organize them at daily and inter-annual time scales. Finally, the differential responses in the diel, and inter-annual communities were used to provide evidence for a large-scale event that began to show an environmental signal in 2010 and subsided in 2011 and beyond. The event was manifested in the organization of the benthic fishes beginning weakly in 2010, peaking in 2011, and fully dissipating by 2012. The biotic effects of the event appeared to disproportionately affect the nighttime assemblage of fishes sampled on the WFS.
520
$a
Chapter Three explores the same WFS ecosystem, using the same fisheries-independent dataset, but also includes explicit modeling of the spatial variability captured by the sampling program undertaking the annual monitoring effort. The results also provided evidence of a disturbance that largely affected the nighttime fish community, and which was operating at spatial scales of variability that were larger than the extent of the shelf system itself. Like the previous study, the timing of this event is coincident with the 2010 Deepwater Horizon oil spill, the subsequent sub-marine dispersal of pollutants, and the cessation of spillage. Furthermore, the spatial models uncovered the influence of known spatial-abiotic gradients within the Gulf LME related to (1) depth, (2) temperature, and (3) salinity on the organization of daytime groundfish communities. Finally, the models developed also described which non-spatially structured abiotic variables were important to the observed beta-diversity. The ultimate results were the decomposition of the biotic response, within years and divided by diel classification, into the (1) pure-spatial, (2) pure-abiotic, (3) spatial-abiotic, and (4) unexplained fractions of variation.
520
$a
Chapter Five employs a clustering technique to identify regime states that relies on hypothesis testing and the use of resemblance profiles as decision criteria. This clustering method avoids some of the arbitrary nature of common clustering solutions seen in ecology, however, it had never been rigorously subjected to numerical data simulation studies. Therefore, a formal investigation of the functional limits of the clustering method was undertaken prior to its use on real fisheries monitoring data, and is presented in Chapter Four. The results of this study are a set of recommendations for researchers seeking to utilize the new method, and the advice is applied in a case study in Chapter Five.
520
$a
Chapter Five presents the ecosystem-level fisheries indicator selection heuristic (EL-FISH) framework for examining long-term time-series data based on ecological monitoring for resources management. The focus of this study is the Gulf LME, encompassing the period of 1980-2011, and it specifically sought to determine to what extent the natural and anthropogenic induced environmental variability, including fishing extractions, affected the structure, function, and status of marine fisheries resources. The methods encompassed by EL-FISH, and the resulting ecosystem model that accounted for ~73% of the variability in biotic resources, allowed for (1) the identification and description of three fisheries resource regime state phase shifts in time, (2) the determination of the effects of fishing and environmental pressures on resources, and (3) providing context and evidence for trade-offs to be considered by managers and stakeholders when addressing fisheries management concerns. The EL-FISH method is fully transferrable and readily adapts to any set of continuous monitoring data. (Abstract shortened by ProQuest.).
590
$a
School code: 0206.
650
4
$a
Biological oceanography.
$3
2122748
690
$a
0416
710
2
$a
University of South Florida.
$b
Marine Science.
$3
1683799
773
0
$t
Dissertation Abstracts International
$g
79-03B(E).
790
$a
0206
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10680352
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9377027
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入