Classical Newtonian gravity = a comp...
SpringerLink (Online service)

FindBook      Google Book      Amazon      博客來     
  • Classical Newtonian gravity = a comprehensive introduction, with examples and exercises /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Classical Newtonian gravity/ by Roberto A. Capuzzo Dolcetta.
    其他題名: a comprehensive introduction, with examples and exercises /
    作者: Capuzzo Dolcetta, Roberto A.
    出版者: Cham :Springer International Publishing : : 2019.,
    面頁冊數: xvi, 176 p. :ill., digital ;24 cm.
    內容註: Chapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ∇ -- 1.5.1 ∇ in Polar Coordinates -- 1.5.2 ∇ in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ∇ -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton's Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace'sChapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ∇ -- 1.5.1 ∇ in Polar Coordinates -- 1.5.2 ∇ in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ∇ -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton's Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace's Equation -- 4.2 Harmonic Functions -- 4.3 Legendre's Polynomials -- 4.4 Recursive Relations -- 4.4.1 First Recursive Relation -- 4.4.2 Second Recursive Relation -- 4.5 Legendre Differential Equation -- 4.6 Orthogonality of Legendre's Polynomials -- 4.7 Development in Series of Legendre's Polynomials -- 4.8 Rodrigues Formula Chapter 5 -- Harmonic and Homogeneous Polynomials -- 5.1 Spherical Harmonics -- 5.2 Solution of the Differential equations for Sm(θ, ϕ) -- 5.3 The Solution in ϕ -- 5.4 A note on the Associated Legendre Differential Equation -- 5.5 Zonal, Sectorial and Tesseral Spherical Harmonics -- 5.5.1Orthogonality Properties -- Chapter 6 -- Series of Spherical Harmonics -- 6.1 Potential Developments Out of a Mass Distribution -- 6.2 The External Earth Potential -- 6.3 Exercises.
    Contained By: Springer eBooks
    標題: Gravity. -
    電子資源: https://doi.org/10.1007/978-3-030-25846-7
    ISBN: 9783030258467
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9375671 電子資源 11.線上閱覽_V 電子書 EB QB335 .C378 2019 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入