語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Semantic kriging for spatio-temporal...
~
Bhattacharjee, Shrutilipi.
FindBook
Google Book
Amazon
博客來
Semantic kriging for spatio-temporal prediction
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Semantic kriging for spatio-temporal prediction/ by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
作者:
Bhattacharjee, Shrutilipi.
其他作者:
Ghosh, Soumya Kanti.
出版者:
Singapore :Springer Singapore : : 2019.,
面頁冊數:
xxv, 127 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
Contained By:
Springer eBooks
標題:
Meteorology - Mathematical models. -
電子資源:
https://doi.org/10.1007/978-981-13-8664-0
ISBN:
9789811386640
Semantic kriging for spatio-temporal prediction
Bhattacharjee, Shrutilipi.
Semantic kriging for spatio-temporal prediction
[electronic resource] /by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen. - Singapore :Springer Singapore :2019. - xxv, 127 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.8391860-949X ;. - Studies in computational intelligence ;v.839..
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
ISBN: 9789811386640
Standard No.: 10.1007/978-981-13-8664-0doiSubjects--Topical Terms:
566557
Meteorology
--Mathematical models.
LC Class. No.: QC866 / .B43 2019
Dewey Class. No.: 551.5028
Semantic kriging for spatio-temporal prediction
LDR
:02299nmm a2200337 a 4500
001
2192188
003
DE-He213
005
20190701131702.0
006
m d
007
cr nn 008maaau
008
200506s2019 si s 0 eng d
020
$a
9789811386640
$q
(electronic bk.)
020
$a
9789811386633
$q
(paper)
024
7
$a
10.1007/978-981-13-8664-0
$2
doi
035
$a
978-981-13-8664-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC866
$b
.B43 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
551.5028
$2
23
090
$a
QC866
$b
.B575 2019
100
1
$a
Bhattacharjee, Shrutilipi.
$3
3412277
245
1 0
$a
Semantic kriging for spatio-temporal prediction
$h
[electronic resource] /
$c
by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xxv, 127 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.839
505
0
$a
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
520
$a
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
650
0
$a
Meteorology
$x
Mathematical models.
$3
566557
650
0
$a
Geospatial data
$x
Mathematical models.
$3
1966164
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
890882
650
2 4
$a
Artificial Intelligence.
$3
769149
700
1
$a
Ghosh, Soumya Kanti.
$3
3412278
700
1
$a
Chen, Jia.
$3
1035899
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.839.
$3
3412279
856
4 0
$u
https://doi.org/10.1007/978-981-13-8664-0
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9374784
電子資源
11.線上閱覽_V
電子書
EB QC866 .B43 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入