語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Broad learning through fusions = an ...
~
Zhang, Jiawei.
FindBook
Google Book
Amazon
博客來
Broad learning through fusions = an application on social networks /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Broad learning through fusions/ by Jiawei Zhang, Philip S. Yu.
其他題名:
an application on social networks /
作者:
Zhang, Jiawei.
其他作者:
Yu, Philip S.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
xv, 419 p. :ill., digital ;24 cm.
內容註:
1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11 Network Embedding -- 12 Frontier and Future Directions -- References.
Contained By:
Springer eBooks
標題:
Data mining. -
電子資源:
https://doi.org/10.1007/978-3-030-12528-8
ISBN:
9783030125288
Broad learning through fusions = an application on social networks /
Zhang, Jiawei.
Broad learning through fusions
an application on social networks /[electronic resource] :by Jiawei Zhang, Philip S. Yu. - Cham :Springer International Publishing :2019. - xv, 419 p. :ill., digital ;24 cm.
1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11 Network Embedding -- 12 Frontier and Future Directions -- References.
This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.
ISBN: 9783030125288
Standard No.: 10.1007/978-3-030-12528-8doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343 / Z43 2019
Dewey Class. No.: 006.312
Broad learning through fusions = an application on social networks /
LDR
:02127nmm a2200337 a 4500
001
2191978
003
DE-He213
005
20190608153632.0
006
m d
007
cr nn 008maaau
008
200506s2019 gw s 0 eng d
020
$a
9783030125288
$q
(electronic bk.)
020
$a
9783030125271
$q
(paper)
024
7
$a
10.1007/978-3-030-12528-8
$2
doi
035
$a
978-3-030-12528-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
Z43 2019
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
Z63 2019
100
1
$a
Zhang, Jiawei.
$3
1938370
245
1 0
$a
Broad learning through fusions
$h
[electronic resource] :
$b
an application on social networks /
$c
by Jiawei Zhang, Philip S. Yu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xv, 419 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11 Network Embedding -- 12 Frontier and Future Directions -- References.
520
$a
This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.
650
0
$a
Data mining.
$3
562972
650
0
$a
Machine learning.
$3
533906
650
0
$a
Online social networks.
$3
624374
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Data Structures.
$3
891009
650
2 4
$a
Information Systems Applications (incl. Internet)
$3
1565452
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
700
1
$a
Yu, Philip S.
$3
622967
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-12528-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9374574
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343 Z43 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入