語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Utilizing big data paradigms for bus...
~
Darmont, J{acute}er{circ}ome, (1972-)
FindBook
Google Book
Amazon
博客來
Utilizing big data paradigms for business intelligence
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Utilizing big data paradigms for business intelligence/ Jerome Darmont and Sabine Loudcher, editors.
其他作者:
Darmont, J{acute}er{circ}ome,
出版者:
Hershey, Pennsylvania :IGI Global, : [2018],
面頁冊數:
1 online resource (xxii, 313 p.)
附註:
Includes index.
內容註:
Chapter 1. Applications of artificial intelligence in the realm of business intelligence -- Chapter 2. A big data platform for enhancing life imaging activities -- Chapter 3. A Survey of parallel indexing techniques for large-scale moving object databases -- Chapter 4. Privacy and security in data-driven urban mobility -- Chapter 5. C-idea: a fast algorithm for computing emerging closed datacubes -- Chapter 6. Large multivariate time series forecasting: Survey on methods and scalability -- Chapter 7. Exploring multiple dynamic social networks in computer-mediated communications: an experimentally validated ecosystem -- Chapter 8. Analysis of operation performance of blast furnace with machine learning methods.
標題:
Business intelligence - Data processing. -
電子資源:
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-4963-5
ISBN:
9781522549642 (ebook)
Utilizing big data paradigms for business intelligence
Utilizing big data paradigms for business intelligence
[electronic resource] /Jerome Darmont and Sabine Loudcher, editors. - Hershey, Pennsylvania :IGI Global,[2018] - 1 online resource (xxii, 313 p.)
Includes index.
Includes bibliographical references and index.
Chapter 1. Applications of artificial intelligence in the realm of business intelligence -- Chapter 2. A big data platform for enhancing life imaging activities -- Chapter 3. A Survey of parallel indexing techniques for large-scale moving object databases -- Chapter 4. Privacy and security in data-driven urban mobility -- Chapter 5. C-idea: a fast algorithm for computing emerging closed datacubes -- Chapter 6. Large multivariate time series forecasting: Survey on methods and scalability -- Chapter 7. Exploring multiple dynamic social networks in computer-mediated communications: an experimentally validated ecosystem -- Chapter 8. Analysis of operation performance of blast furnace with machine learning methods.
Restricted to subscribers or individual electronic text purchasers.
"This book explores problems related to the five "Vs" of big data, technological issues, as well as big data analytics applications. It also covers how data must be extracted, grouped, organized, aggregated and correlated with methods and techniques such as data integration (ETL), data warehousing, online analytical processing (OLAP), reporting, data mining and machine learning"--Provided by publisher.
ISBN: 9781522549642 (ebook)Subjects--Topical Terms:
884808
Business intelligence
--Data processing.
LC Class. No.: HD38.7 / .U75 2018e
Dewey Class. No.: 658.4/72028557
Utilizing big data paradigms for business intelligence
LDR
:02146nmm 2200289 a 4500
001
2183933
003
IGIG
005
20191022153745.0
006
m o d
007
cr cn
008
191225s2018 pau fob 001 0 eng d
010
$z
2017032931
020
$a
9781522549642 (ebook)
020
$a
9781522549635 (hardback)
035
$a
(OCoLC)1045082196
035
$a
1081021177
040
$a
CaBNVSL
$b
eng
$c
CaBNVSL
$d
CaBNVSL
050
0 0
$a
HD38.7
$b
.U75 2018e
082
0 0
$a
658.4/72028557
$2
23
245
0 0
$a
Utilizing big data paradigms for business intelligence
$h
[electronic resource] /
$c
Jerome Darmont and Sabine Loudcher, editors.
260
$a
Hershey, Pennsylvania :
$b
IGI Global,
$c
[2018]
300
$a
1 online resource (xxii, 313 p.)
500
$a
Includes index.
504
$a
Includes bibliographical references and index.
505
0
$a
Chapter 1. Applications of artificial intelligence in the realm of business intelligence -- Chapter 2. A big data platform for enhancing life imaging activities -- Chapter 3. A Survey of parallel indexing techniques for large-scale moving object databases -- Chapter 4. Privacy and security in data-driven urban mobility -- Chapter 5. C-idea: a fast algorithm for computing emerging closed datacubes -- Chapter 6. Large multivariate time series forecasting: Survey on methods and scalability -- Chapter 7. Exploring multiple dynamic social networks in computer-mediated communications: an experimentally validated ecosystem -- Chapter 8. Analysis of operation performance of blast furnace with machine learning methods.
506
$a
Restricted to subscribers or individual electronic text purchasers.
520
3
$a
"This book explores problems related to the five "Vs" of big data, technological issues, as well as big data analytics applications. It also covers how data must be extracted, grouped, organized, aggregated and correlated with methods and techniques such as data integration (ETL), data warehousing, online analytical processing (OLAP), reporting, data mining and machine learning"--Provided by publisher.
650
0
$a
Business intelligence
$x
Data processing.
$3
884808
650
0
$a
Big data.
$3
2045508
700
1
$a
Darmont, J{acute}er{circ}ome,
$d
1972-
$e
editor.
$3
3395581
700
1
$a
Loudcher, Sabine,
$d
1969-
$e
editor.
$3
3395582
856
4 0
$u
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-4963-5
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9371462
電子資源
11.線上閱覽_V
電子書
EB HD38.7 .U75 2018e
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入