語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representations of the infinite symm...
~
Borodin, Alexei.
FindBook
Google Book
Amazon
博客來
Representations of the infinite symmetric group
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Representations of the infinite symmetric group/ Alexei Borodin, Grigori Olshanski.
作者:
Borodin, Alexei.
其他作者:
Olshanskii, Grigori
出版者:
Cambridge :Cambridge University Press, : 2017.,
面頁冊數:
vii, 160 p. :ill., digital ;24 cm.
標題:
Hopf algebras. -
電子資源:
https://doi.org/10.1017/CBO9781316798577
ISBN:
9781316798577
Representations of the infinite symmetric group
Borodin, Alexei.
Representations of the infinite symmetric group
[electronic resource] /Alexei Borodin, Grigori Olshanski. - Cambridge :Cambridge University Press,2017. - vii, 160 p. :ill., digital ;24 cm. - Cambridge studies in advanced mathematics ;160. - Cambridge studies in advanced mathematics ;160..
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
ISBN: 9781316798577Subjects--Topical Terms:
706147
Hopf algebras.
LC Class. No.: QA613.8 / .B67 2017
Dewey Class. No.: 515.22
Representations of the infinite symmetric group
LDR
:01800nmm a2200253 a 4500
001
2182991
003
UkCbUP
005
20191005153602.0
006
m d
007
cr nn 008maaau
008
191203s2017 enk o 1 0 eng d
020
$a
9781316798577
$q
(electronic bk.)
020
$a
9781107175556
$q
(paper)
035
$a
CR9781316798577
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA613.8
$b
.B67 2017
082
0 4
$a
515.22
$2
23
090
$a
QA613.8
$b
.B736 2017
100
1
$a
Borodin, Alexei.
$3
3170725
245
1 0
$a
Representations of the infinite symmetric group
$h
[electronic resource] /
$c
Alexei Borodin, Grigori Olshanski.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2017.
300
$a
vii, 160 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge studies in advanced mathematics ;
$v
160
520
$a
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
650
0
$a
Hopf algebras.
$3
706147
650
0
$a
Algebraic topology.
$3
532744
650
0
$a
Representations of groups.
$3
519598
650
0
$a
Symmetry groups.
$3
523813
700
1
$a
Olshanskii, Grigori
$q
(Grigori I.)
$3
3391850
830
0
$a
Cambridge studies in advanced mathematics ;
$v
160.
$3
3391851
856
4 0
$u
https://doi.org/10.1017/CBO9781316798577
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9371223
電子資源
11.線上閱覽_V
電子書
EB QA613.8 .B67 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入