語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Python for scientists
~
Stewart, John M., (1943 July 1-)
FindBook
Google Book
Amazon
博客來
Python for scientists
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Python for scientists/ John M. Stewart.
作者:
Stewart, John M.,
出版者:
Cambridge :Cambridge University Press, : 2014.,
面頁冊數:
xii, 220 p. :ill., digital ;24 cm.
內容註:
Machine generated contents note: Preface; 1. Introduction; 2. Getting started with IPython; 3. A short Python tutorial; 4. Numpy; 5. Two-dimensional graphics; 6. Three-dimensional graphics; 7. Ordinary differential equations; 8. Partial differential equations: a pseudospectral approach; 9. Case study: multigrid; 10. Appendix A. Installing a Python environment; Appendix B. Fortran77 subroutines for pseudospectral methods; References; Index.
標題:
Science - Data processing. -
電子資源:
https://doi.org/10.1017/CBO9781107447875
ISBN:
9781107447875
Python for scientists
Stewart, John M.,1943 July 1-
Python for scientists
[electronic resource] /John M. Stewart. - Cambridge :Cambridge University Press,2014. - xii, 220 p. :ill., digital ;24 cm.
Machine generated contents note: Preface; 1. Introduction; 2. Getting started with IPython; 3. A short Python tutorial; 4. Numpy; 5. Two-dimensional graphics; 6. Three-dimensional graphics; 7. Ordinary differential equations; 8. Partial differential equations: a pseudospectral approach; 9. Case study: multigrid; 10. Appendix A. Installing a Python environment; Appendix B. Fortran77 subroutines for pseudospectral methods; References; Index.
Python is a free, open source, easy-to-use software tool that offers a significant alternative to proprietary packages such as MATLAB and Mathematica. This book covers everything the working scientist needs to know to start using Python effectively. The author explains scientific Python from scratch, showing how easy it is to implement and test non-trivial mathematical algorithms and guiding the reader through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the program's capabilities. In particular, readers are shown how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. Instead of exercises the book contains useful snippets of tested code which the reader can adapt to handle problems in their own field, allowing students and researchers with little computer expertise to get up and running as soon as possible.
ISBN: 9781107447875Subjects--Topical Terms:
534323
Science
--Data processing.
LC Class. No.: Q183.9 / .S865 2014
Dewey Class. No.: 005.133
Python for scientists
LDR
:02182nmm a2200265 a 4500
001
2182982
003
UkCbUP
005
20151005020621.0
006
m d
007
cr nn 008maaau
008
191203s2014 enk o 1 0 eng d
020
$a
9781107447875
$q
(electronic bk.)
020
$a
9781107061392
$q
(hardback)
020
$a
9781107686427
$q
(paperback)
035
$a
CR9781107447875
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
Q183.9
$b
.S865 2014
082
0 4
$a
005.133
$2
23
090
$a
Q183.9
$b
.S849 2014
100
1
$a
Stewart, John M.,
$d
1943 July 1-
$3
3208329
245
1 0
$a
Python for scientists
$h
[electronic resource] /
$c
John M. Stewart.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
xii, 220 p. :
$b
ill., digital ;
$c
24 cm.
505
8
$a
Machine generated contents note: Preface; 1. Introduction; 2. Getting started with IPython; 3. A short Python tutorial; 4. Numpy; 5. Two-dimensional graphics; 6. Three-dimensional graphics; 7. Ordinary differential equations; 8. Partial differential equations: a pseudospectral approach; 9. Case study: multigrid; 10. Appendix A. Installing a Python environment; Appendix B. Fortran77 subroutines for pseudospectral methods; References; Index.
520
$a
Python is a free, open source, easy-to-use software tool that offers a significant alternative to proprietary packages such as MATLAB and Mathematica. This book covers everything the working scientist needs to know to start using Python effectively. The author explains scientific Python from scratch, showing how easy it is to implement and test non-trivial mathematical algorithms and guiding the reader through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the program's capabilities. In particular, readers are shown how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. Instead of exercises the book contains useful snippets of tested code which the reader can adapt to handle problems in their own field, allowing students and researchers with little computer expertise to get up and running as soon as possible.
650
0
$a
Science
$x
Data processing.
$3
534323
650
0
$a
Python (Computer program language)
$3
729789
856
4 0
$u
https://doi.org/10.1017/CBO9781107447875
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9371214
電子資源
11.線上閱覽_V
電子書
EB Q183.9 .S865 2014
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入