語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learning scientific programming with...
~
Hill, Christian, (1974-)
FindBook
Google Book
Amazon
博客來
Learning scientific programming with Python
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning scientific programming with Python/ Christian Hill.
作者:
Hill, Christian,
出版者:
Cambridge :Cambridge University Press, : 2015.,
面頁冊數:
vii, 452 p. :ill., digital ;24 cm.
內容註:
Machine generated contents note: 1. Introduction; 2. The core Python language I; 3. Interlude: simple plotting with Pylab; 4. The core Python language II; 5. IPython and IPython notebook; 6. NumPy; 7. Matplotlib; 8. SciPy; 9. General scientific programming; Appendix A; Solutions; Index.
標題:
Science - Data processing. -
電子資源:
https://doi.org/10.1017/CBO9781139871754
ISBN:
9781139871754
Learning scientific programming with Python
Hill, Christian,1974-
Learning scientific programming with Python
[electronic resource] /Christian Hill. - Cambridge :Cambridge University Press,2015. - vii, 452 p. :ill., digital ;24 cm.
Machine generated contents note: 1. Introduction; 2. The core Python language I; 3. Interlude: simple plotting with Pylab; 4. The core Python language II; 5. IPython and IPython notebook; 6. NumPy; 7. Matplotlib; 8. SciPy; 9. General scientific programming; Appendix A; Solutions; Index.
Learn to master basic programming tasks from scratch with real-life scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to quickly gain proficiency. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving onto the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualisation, this textbook also discusses the use of IPython notebooks to build rich-media, shareable documents for scientific analysis. Including a final chapter introducing challenging topics such as floating-point precision and algorithm stability, and with extensive online resources to support advanced study, this textbook represents a targeted package for students requiring a solid foundation in Python programming.
ISBN: 9781139871754Subjects--Topical Terms:
534323
Science
--Data processing.
LC Class. No.: Q183.9 / .H58 2015
Dewey Class. No.: 005.133
Learning scientific programming with Python
LDR
:02153nmm a2200265 a 4500
001
2182967
003
UkCbUP
005
20160216110118.0
006
m d
007
cr nn 008maaau
008
191203s2015 enk o 1 0 eng d
020
$a
9781139871754
$q
(electronic bk.)
020
$a
9781107075412
$q
(hardback)
020
$a
9781107428225
$q
(paperback)
035
$a
CR9781139871754
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
Q183.9
$b
.H58 2015
082
0 4
$a
005.133
$2
23
090
$a
Q183.9
$b
.H645 2015
100
1
$a
Hill, Christian,
$d
1974-
$3
2183547
245
1 0
$a
Learning scientific programming with Python
$h
[electronic resource] /
$c
Christian Hill.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2015.
300
$a
vii, 452 p. :
$b
ill., digital ;
$c
24 cm.
505
8
$a
Machine generated contents note: 1. Introduction; 2. The core Python language I; 3. Interlude: simple plotting with Pylab; 4. The core Python language II; 5. IPython and IPython notebook; 6. NumPy; 7. Matplotlib; 8. SciPy; 9. General scientific programming; Appendix A; Solutions; Index.
520
$a
Learn to master basic programming tasks from scratch with real-life scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to quickly gain proficiency. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving onto the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualisation, this textbook also discusses the use of IPython notebooks to build rich-media, shareable documents for scientific analysis. Including a final chapter introducing challenging topics such as floating-point precision and algorithm stability, and with extensive online resources to support advanced study, this textbook represents a targeted package for students requiring a solid foundation in Python programming.
650
0
$a
Science
$x
Data processing.
$3
534323
650
0
$a
Science
$x
Mathematics.
$3
653973
650
0
$a
Python (Computer program language)
$3
729789
856
4 0
$u
https://doi.org/10.1017/CBO9781139871754
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9371199
電子資源
11.線上閱覽_V
電子書
EB Q183.9 .H58 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入