語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sustainable food waste-to-energy sys...
~
Trabold, Thomas,
FindBook
Google Book
Amazon
博客來
Sustainable food waste-to-energy systems /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Sustainable food waste-to-energy systems // edited by Thomas A. Trabold, Callie W. Babbitt.
其他作者:
Trabold, Thomas,
面頁冊數:
1 online resource. :color illustrations
內容註:
Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Acknowledgment; Chapter 1: Introduction; Abstract; Chapter 2: Waste Resources in the Food Supply Chain; Abstract; 2.1 Introduction; 2.2 Global Perspective; 2.3 National Perspectives; 2.4 Assessment of State and Region-Specific Food Waste Resources; 2.5 Conclusions; Chapter 3: Conventional Food Waste Management Methods; Abstract; 3.1 Introduction; 3.2 Food Donation; 3.3 Animal Feed Production; 3.4 Composting; 3.5 Wastewater Treatment; 3.6 Incineration; 3.7 Landfilling; 3.8 Conclusions
內容註:
Chapter 4: Sustainable Waste-to-Energy Technologies: Anaerobic DigestionAbstract; Acknowledgments; 4.1 Introduction; 4.2 Anaerobic Digestion Process; 4.3 Performance of Anaerobic Digestion Systems; 4.4 Process Stability; 4.5 Anaerobic Codigestion; 4.6 Biogas Utilization; 4.7 Future Perspective and Research Needs; Chapter 5: Sustainable Waste-to-Energy Technologies: Fermentation; Abstract; 5.1 Introduction; 5.2 Bioethanol From Food Waste; 5.3 Ethanol Production Process Description; 5.4 Biobutanol From Food Waste; 5.5 Biohydrogen From Food Waste Fermentation
內容註:
5.6 Future Perspective and Research Needs5.7 Conclusions; Chapter 6: Sustainable Waste-to-Energy Technologies: Transesterification; Abstract; 6.1 Introduction; 6.2 Potential Feedstocks for Biodiesel Production; 6.3 Transesterification of Waste Cooking Oil (WCO); 6.4 Uses of Biodiesel; 6.5 Utilization of By-product Glycerol; 6.6 Future Perspective and Research Needs; 6.7 Conclusions; Chapter 7: Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems; Abstract; 7.1 Introduction; 7.2 Theoretical Background and Performance Indicators
內容註:
7.3 Energy Recovery From Food Industry Wastes Using BESs7.4 Limitations and Challenges of BESs; 7.5 Future Perspective and Research Needs; 7.6 Conclusions; Chapter 8: Sustainable Waste-to-Energy Technologies: Gasification and Pyrolysis; Abstract; 8.1 Introduction; 8.2 Coupling Food Waste With Suitable Conversion Technologies; 8.3 Thermochemical Conversion of Source-Specific Food Waste and Residues; 8.4 Future Perspective and Research Needs; 8.5 Conclusions; Chapter 9: Sustainable Waste-to-Energy Technologies: Hydrothermal Liquefaction; Abstract; 9.1 Introduction
內容註:
9.2 Liquefaction Technologies and Conversion Mechanisms9.3 Hydrothermal Liquefaction of Source-Specific Food Wastes and Residues; 9.4 Future Perspectives and Research Needs; 9.5 Conclusions; Chapter 10: Environmental Aspects of Food Waste-to-Energy Conversion; Abstract; 10.1 Introduction; 10.2 LCA Methodology and Key Assumptions; 10.3 Life Cycle Impacts of Food Waste-to-Energy Conversion; 10.4 Comparison of Technologies; 10.5 Conclusions; Chapter 11: Economic Aspects of Food Waste-to-Energy System Deployment; Abstract; 11.1 Introduction; 11.2 Project Feasibility Considerations
標題:
Refuse and refuse disposal. -
電子資源:
https://www.sciencedirect.com/science/book/9780128111574
ISBN:
9780128111581
Sustainable food waste-to-energy systems /
Sustainable food waste-to-energy systems /
edited by Thomas A. Trabold, Callie W. Babbitt. - 1 online resource. :color illustrations
Includes bibliographical references and index.
Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Acknowledgment; Chapter 1: Introduction; Abstract; Chapter 2: Waste Resources in the Food Supply Chain; Abstract; 2.1 Introduction; 2.2 Global Perspective; 2.3 National Perspectives; 2.4 Assessment of State and Region-Specific Food Waste Resources; 2.5 Conclusions; Chapter 3: Conventional Food Waste Management Methods; Abstract; 3.1 Introduction; 3.2 Food Donation; 3.3 Animal Feed Production; 3.4 Composting; 3.5 Wastewater Treatment; 3.6 Incineration; 3.7 Landfilling; 3.8 Conclusions
Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field.
ISBN: 9780128111581Subjects--Topical Terms:
654719
Refuse and refuse disposal.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: TD791
Dewey Class. No.: 363.728
Sustainable food waste-to-energy systems /
LDR
:05297nmm a2200349 i 4500
001
2182013
006
m o d
007
cr cnu|unuuu||
008
191128s2018 enka ob 001 0 eng d
020
$a
9780128111581
$q
(electronic bk.)
020
$a
0128111585
$q
(electronic bk.)
020
$a
9780128111574
020
$a
0128111577
035
$a
(OCoLC)1052566513
$z
(OCoLC)1052858702
035
$a
els19100137
040
$a
N$T
$b
eng
$e
rda
$e
pn
$c
N$T
$d
N$T
$d
EBLCP
$d
NLE
$d
YDX
$d
OPELS
$d
OCLCF
$d
UPM
$d
MERER
$d
OTZ
$d
OCLCQ
$d
LVT
$d
D6H
041
0
$a
eng
050
4
$a
TD791
082
0 4
$a
363.728
$2
23
245
0 0
$a
Sustainable food waste-to-energy systems /
$c
edited by Thomas A. Trabold, Callie W. Babbitt.
264
1
$a
Oxford :
$b
Academic Press,
$c
2018.
300
$a
1 online resource. :
$b
color illustrations
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
504
$a
Includes bibliographical references and index.
505
0
$a
Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Acknowledgment; Chapter 1: Introduction; Abstract; Chapter 2: Waste Resources in the Food Supply Chain; Abstract; 2.1 Introduction; 2.2 Global Perspective; 2.3 National Perspectives; 2.4 Assessment of State and Region-Specific Food Waste Resources; 2.5 Conclusions; Chapter 3: Conventional Food Waste Management Methods; Abstract; 3.1 Introduction; 3.2 Food Donation; 3.3 Animal Feed Production; 3.4 Composting; 3.5 Wastewater Treatment; 3.6 Incineration; 3.7 Landfilling; 3.8 Conclusions
505
8
$a
Chapter 4: Sustainable Waste-to-Energy Technologies: Anaerobic DigestionAbstract; Acknowledgments; 4.1 Introduction; 4.2 Anaerobic Digestion Process; 4.3 Performance of Anaerobic Digestion Systems; 4.4 Process Stability; 4.5 Anaerobic Codigestion; 4.6 Biogas Utilization; 4.7 Future Perspective and Research Needs; Chapter 5: Sustainable Waste-to-Energy Technologies: Fermentation; Abstract; 5.1 Introduction; 5.2 Bioethanol From Food Waste; 5.3 Ethanol Production Process Description; 5.4 Biobutanol From Food Waste; 5.5 Biohydrogen From Food Waste Fermentation
505
8
$a
5.6 Future Perspective and Research Needs5.7 Conclusions; Chapter 6: Sustainable Waste-to-Energy Technologies: Transesterification; Abstract; 6.1 Introduction; 6.2 Potential Feedstocks for Biodiesel Production; 6.3 Transesterification of Waste Cooking Oil (WCO); 6.4 Uses of Biodiesel; 6.5 Utilization of By-product Glycerol; 6.6 Future Perspective and Research Needs; 6.7 Conclusions; Chapter 7: Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems; Abstract; 7.1 Introduction; 7.2 Theoretical Background and Performance Indicators
505
8
$a
7.3 Energy Recovery From Food Industry Wastes Using BESs7.4 Limitations and Challenges of BESs; 7.5 Future Perspective and Research Needs; 7.6 Conclusions; Chapter 8: Sustainable Waste-to-Energy Technologies: Gasification and Pyrolysis; Abstract; 8.1 Introduction; 8.2 Coupling Food Waste With Suitable Conversion Technologies; 8.3 Thermochemical Conversion of Source-Specific Food Waste and Residues; 8.4 Future Perspective and Research Needs; 8.5 Conclusions; Chapter 9: Sustainable Waste-to-Energy Technologies: Hydrothermal Liquefaction; Abstract; 9.1 Introduction
505
8
$a
9.2 Liquefaction Technologies and Conversion Mechanisms9.3 Hydrothermal Liquefaction of Source-Specific Food Wastes and Residues; 9.4 Future Perspectives and Research Needs; 9.5 Conclusions; Chapter 10: Environmental Aspects of Food Waste-to-Energy Conversion; Abstract; 10.1 Introduction; 10.2 LCA Methodology and Key Assumptions; 10.3 Life Cycle Impacts of Food Waste-to-Energy Conversion; 10.4 Comparison of Technologies; 10.5 Conclusions; Chapter 11: Economic Aspects of Food Waste-to-Energy System Deployment; Abstract; 11.1 Introduction; 11.2 Project Feasibility Considerations
520
$a
Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field.
650
0
$a
Refuse and refuse disposal.
$3
654719
650
0
$a
Refuse and refuse disposal
$x
Environmental aspects.
$3
749724
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Trabold, Thomas,
$e
editor.
$3
3389900
700
1
$a
Babbitt, Callie W.,
$e
editor.
$3
3389901
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128111574
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9370897
電子資源
11.線上閱覽_V
電子書
EB TD791
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入