語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Cooperative and graph signal process...
~
Djurić, Petar M.,
FindBook
Google Book
Amazon
博客來
Cooperative and graph signal processing : = principles and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Cooperative and graph signal processing :/ Petar M. Djurić, Cédric Richard.
其他題名:
principles and applications /
作者:
Djurić, Petar M.,
其他作者:
Richard, Cédric,
面頁冊數:
1 online resource
內容註:
Front Cover; Cooperative and Graph Signal Processing: Principles and Applications; Copyright; Contents; Contributors; Preface; Part 1: Basics of Inference Over Networks; Chapter 1: Asynchronous Adaptive Networks; 1.1 Introduction; 1.1.1 Asynchronous Behavior; 1.1.2 Organization of the Chapter; 1.2 Single-Agent Adaptation and Learning; 1.2.1 Risk and Loss Functions; 1.2.2 Conditions on Cost Function; 1.2.3 Stochastic-Gradient Approximation; 1.2.4 Conditions on Gradient Noise Process; 1.2.5 Random Updates; 1.2.6 Mean-Square-Error Stability; 1.2.7 Mean-Square-Error Performance.
內容註:
1.3 Centralized Adaptation and Learning1.3.1 Noncooperative MSE Processing; 1.3.2 Centralized MSE Processing; 1.3.3 Stochastic-Gradient Centralized Solution; 1.3.4 Performance of Centralized Solution; 1.3.5 Comparison With Noncooperative Processing; 1.4 Synchronous Multiagent Adaptation and Learning; 1.4.1 Strongly Connected Networks; 1.4.2 Distributed Optimization; 1.4.3 Synchronous Consensus Strategy; 1.4.4 Synchronous Diffusion Strategies; 1.5 Asynchronous Multiagent Adaptation and Learning; 1.5.1 Asynchronous Model; 1.5.2 Mean Graph; 1.5.3 Random Combination Policy.
內容註:
1.5.4 Perron Vectors1.6 Asynchronous Network Performance; 1.6.1 MSD Performance; 1.7 Network Stability and Performance; 1.7.1 MSE Networks; 1.7.2 Diffusion Networks; 1.8 Concluding Remarks; References; Chapter 2: Estimation and Detection Over Adaptive Networks; 2.1 Introduction; 2.2 Inference Over Networks; 2.2.1 Canonical Inference Problems; 2.2.2 Distributed Inference Problem; Architectures with fusion center; Fully flat architectures; 2.2.3 Inference Over Adaptive Networks; 2.3 Diffusion Implementations; 2.4 Distributed Adaptive Estimation (DAE).
內容註:
2.4.1 Constructing the Distributed Adaptive Estimation Algorithm2.4.2 Mean-Square-Error Performance; 2.4.3 Useful Comparisons; 2.4.4 DAE at Work; 2.5 Distributed Adaptive Detection (DAD); 2.5.1 Constructing the Distributed Adaptive Detection Algorithm; 2.5.2 Detection Performance; 2.5.3 Weak Law of Small Step-Sizes; 2.5.4 Asymptotic Normality; 2.5.5 Large Deviations; 2.5.6 Refined Large Deviations Analysis: Exact Asymptotics; 2.5.7 DAD at Work; 2.6 Universal Scaling Laws: Estimation Versus Detection; Appendix; A.1 Procedure to Evaluate Eq. (2.69); References.
內容註:
Chapter 3: Multitask Learning Over Adaptive Networks With Grouping Strategies3.1 Introduction; 3.2 Network Model and Diffusion LMS; 3.2.1 Network Model; 3.2.2 A Brief Review of Diffusion LMS; 3.3 Group Diffusion LMS; 3.3.1 Motivation; 3.3.2 Group Diffusion LMS Algorithm; 3.3.3 Network Behavior; Mean weight behavior analysis; Mean-square error behavior analysis; 3.4 Grouping Strategies; 3.4.1 Fixed Grouping Strategy; 3.4.2 Adaptive Grouping Strategy; 3.4.3 Adaptive Combination Strategy; 3.5 Simulations; 3.5.1 Model Validation; 3.5.2 Performance of the Adaptive Grouping Strategy.
標題:
Signal processing. -
電子資源:
https://www.sciencedirect.com/science/book/9780128136775
ISBN:
9780128136782
Cooperative and graph signal processing : = principles and applications /
Djurić, Petar M.,
Cooperative and graph signal processing :
principles and applications /Petar M. Djurić, Cédric Richard. - 1 online resource
Includes bibliographical references and index.
Front Cover; Cooperative and Graph Signal Processing: Principles and Applications; Copyright; Contents; Contributors; Preface; Part 1: Basics of Inference Over Networks; Chapter 1: Asynchronous Adaptive Networks; 1.1 Introduction; 1.1.1 Asynchronous Behavior; 1.1.2 Organization of the Chapter; 1.2 Single-Agent Adaptation and Learning; 1.2.1 Risk and Loss Functions; 1.2.2 Conditions on Cost Function; 1.2.3 Stochastic-Gradient Approximation; 1.2.4 Conditions on Gradient Noise Process; 1.2.5 Random Updates; 1.2.6 Mean-Square-Error Stability; 1.2.7 Mean-Square-Error Performance.
"Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. Presents the first book on cooperative signal processing and graph signal processing Provides a range of applications and application areas that are thoroughly coveredIncludes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book"--
ISBN: 9780128136782Subjects--Topical Terms:
533904
Signal processing.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: TK5102.9
Dewey Class. No.: 621.3822
Cooperative and graph signal processing : = principles and applications /
LDR
:05575nmm a2200361 i 4500
001
2181955
006
m o d
007
cr cnu|unuuu||
008
191128t20182018enk ob 001 0 eng d
020
$a
9780128136782
$q
(electronic bk.)
020
$a
0128136782
$q
(electronic bk.)
020
$a
9780128136775
020
$a
0128136774
035
$a
(OCoLC)1043555501
$z
(OCoLC)1043879662
$z
(OCoLC)1044717885
$z
(OCoLC)1105183890
$z
(OCoLC)1105571768
035
$a
els19100079
040
$a
N$T
$b
eng
$e
rda
$e
pn
$c
N$T
$d
N$T
$d
YDX
$d
OPELS
$d
EBLCP
$d
OCLCF
$d
CNCGM
$d
MERER
$d
NLE
$d
UKMGB
$d
OCLCQ
$d
U3W
$d
OCLCQ
$d
LVT
$d
OCLCQ
$d
D6H
$d
ABC
$d
LQU
041
0
$a
eng
050
4
$a
TK5102.9
082
0 4
$a
621.3822
$2
23
100
1
$a
Djurić, Petar M.,
$e
author.
$3
3389775
245
1 0
$a
Cooperative and graph signal processing :
$b
principles and applications /
$c
Petar M. Djurić, Cédric Richard.
264
1
$a
London, United Kingdom :
$b
Academic Press, an imprint of Elsevier,
$c
[2018]
264
4
$c
©2018
300
$a
1 online resource
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
504
$a
Includes bibliographical references and index.
505
0
$a
Front Cover; Cooperative and Graph Signal Processing: Principles and Applications; Copyright; Contents; Contributors; Preface; Part 1: Basics of Inference Over Networks; Chapter 1: Asynchronous Adaptive Networks; 1.1 Introduction; 1.1.1 Asynchronous Behavior; 1.1.2 Organization of the Chapter; 1.2 Single-Agent Adaptation and Learning; 1.2.1 Risk and Loss Functions; 1.2.2 Conditions on Cost Function; 1.2.3 Stochastic-Gradient Approximation; 1.2.4 Conditions on Gradient Noise Process; 1.2.5 Random Updates; 1.2.6 Mean-Square-Error Stability; 1.2.7 Mean-Square-Error Performance.
505
8
$a
1.3 Centralized Adaptation and Learning1.3.1 Noncooperative MSE Processing; 1.3.2 Centralized MSE Processing; 1.3.3 Stochastic-Gradient Centralized Solution; 1.3.4 Performance of Centralized Solution; 1.3.5 Comparison With Noncooperative Processing; 1.4 Synchronous Multiagent Adaptation and Learning; 1.4.1 Strongly Connected Networks; 1.4.2 Distributed Optimization; 1.4.3 Synchronous Consensus Strategy; 1.4.4 Synchronous Diffusion Strategies; 1.5 Asynchronous Multiagent Adaptation and Learning; 1.5.1 Asynchronous Model; 1.5.2 Mean Graph; 1.5.3 Random Combination Policy.
505
8
$a
1.5.4 Perron Vectors1.6 Asynchronous Network Performance; 1.6.1 MSD Performance; 1.7 Network Stability and Performance; 1.7.1 MSE Networks; 1.7.2 Diffusion Networks; 1.8 Concluding Remarks; References; Chapter 2: Estimation and Detection Over Adaptive Networks; 2.1 Introduction; 2.2 Inference Over Networks; 2.2.1 Canonical Inference Problems; 2.2.2 Distributed Inference Problem; Architectures with fusion center; Fully flat architectures; 2.2.3 Inference Over Adaptive Networks; 2.3 Diffusion Implementations; 2.4 Distributed Adaptive Estimation (DAE).
505
8
$a
2.4.1 Constructing the Distributed Adaptive Estimation Algorithm2.4.2 Mean-Square-Error Performance; 2.4.3 Useful Comparisons; 2.4.4 DAE at Work; 2.5 Distributed Adaptive Detection (DAD); 2.5.1 Constructing the Distributed Adaptive Detection Algorithm; 2.5.2 Detection Performance; 2.5.3 Weak Law of Small Step-Sizes; 2.5.4 Asymptotic Normality; 2.5.5 Large Deviations; 2.5.6 Refined Large Deviations Analysis: Exact Asymptotics; 2.5.7 DAD at Work; 2.6 Universal Scaling Laws: Estimation Versus Detection; Appendix; A.1 Procedure to Evaluate Eq. (2.69); References.
505
8
$a
Chapter 3: Multitask Learning Over Adaptive Networks With Grouping Strategies3.1 Introduction; 3.2 Network Model and Diffusion LMS; 3.2.1 Network Model; 3.2.2 A Brief Review of Diffusion LMS; 3.3 Group Diffusion LMS; 3.3.1 Motivation; 3.3.2 Group Diffusion LMS Algorithm; 3.3.3 Network Behavior; Mean weight behavior analysis; Mean-square error behavior analysis; 3.4 Grouping Strategies; 3.4.1 Fixed Grouping Strategy; 3.4.2 Adaptive Grouping Strategy; 3.4.3 Adaptive Combination Strategy; 3.5 Simulations; 3.5.1 Model Validation; 3.5.2 Performance of the Adaptive Grouping Strategy.
520
$a
"Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. Presents the first book on cooperative signal processing and graph signal processing Provides a range of applications and application areas that are thoroughly coveredIncludes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book"--
$c
Provided by publisher.
650
0
$a
Signal processing.
$3
533904
650
0
$a
Image processing.
$3
621117
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Richard, Cédric,
$e
author.
$3
3389776
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128136775
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9370839
電子資源
11.線上閱覽_V
電子書
EB TK5102.9
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入