語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Brain-computer interfacing for assis...
~
Gandhi, Vaibhav,
FindBook
Google Book
Amazon
博客來
Brain-computer interfacing for assistive robotics : = electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Brain-computer interfacing for assistive robotics :/ Vaibhav Gandhi.
其他題名:
electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces /
作者:
Gandhi, Vaibhav,
面頁冊數:
1 online resource (259 pages) :illustrations (some color), tables
內容註:
1. Introduction -- 1.1. Introduction -- 1.2. Rationale -- 1.3. Objectives -- 2. Interfacing Brain and Machine -- 2.1. Introduction -- 2.2. The Brain and Electrode Placement -- 2.3. Operational Techniques in BCI -- 2.4. Data Acquisition -- 2.5. Preprocessing: A Signal Enhancement Requirement Along with Noise Reduction -- 2.6. Feature Extraction -- 2.7. Classification -- 2.8. Post-processing -- 2.9. Validation and Optimization Techniques -- 2.10. Graphical User Interface [GUI] -- 2.11. Strategies in BCI Applications -- 2.12. Performance Measures of a BCI System -- 2.13. Conclusion -- 3. Fundamentals of Recurrent Quantum Neural Networks -- 3.1. Introduction -- 3.2. Postulates of Quantum Mechanics -- 3.3. Quantum Mechanics and the Schrodinger Wave Equation -- 3.4. Theoretical Concept of the RQNN Model -- 3.5. Traditional RQNN-Based Signal Enhancement -- 3.6. Revised RQNN-Based Signal Enhancement -- 3.7. Discussion -- 3.8. Conclusion.
內容註:
4. The Proposed Graphical User Interface (GUI) -- 4.1. Introduction -- 4.2. Overview of the Proposed GUI Within the BCI Framework -- 4.3. Interfacing MATLAB and Visual Basic -- 4.4. Conclusion -- 5. Recurrent Quantum Neural Network (RQNN)- Based EEG Enhancement -- 5.1. Introduction -- 5.2. Traditional RQNN Model for EEG Enhancement -- 5.3. Revised RQNN Model for EEG Signal Enhancement -- 5.4. Towards Subject-Specific RQNN Parameters -- 5.5. Discussion -- 5.6. Conclusion -- 6. Graphical User Interface (GUI) and Robot Operation -- 6.1. Introduction -- 6.2. The EEG Acquisition Process -- 6.3. RQNN-Based EEG Signal Enhancement -- 6.4. Autonomous and Supervised GUI Operation -- 6.5. Maneuvering the Simulated Mobile Robot Using Only MI EEG -- 6.6. Maneuvering the Physical Mobile Robot Using Only MI EEG -- 6.7. Conclusion -- 7. Conclusion -- 7.1. Contributions of the Book -- 7.2. Future Research Directions -- 7.3. Conclusion.
標題:
Brain-computer interfaces. -
電子資源:
https://www.sciencedirect.com/science/book/9780128015438
ISBN:
9780128015872
Brain-computer interfacing for assistive robotics : = electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces /
Gandhi, Vaibhav,
Brain-computer interfacing for assistive robotics :
electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces /Vaibhav Gandhi. - 1 online resource (259 pages) :illustrations (some color), tables
Includes bibliographical references and index.
1. Introduction -- 1.1. Introduction -- 1.2. Rationale -- 1.3. Objectives -- 2. Interfacing Brain and Machine -- 2.1. Introduction -- 2.2. The Brain and Electrode Placement -- 2.3. Operational Techniques in BCI -- 2.4. Data Acquisition -- 2.5. Preprocessing: A Signal Enhancement Requirement Along with Noise Reduction -- 2.6. Feature Extraction -- 2.7. Classification -- 2.8. Post-processing -- 2.9. Validation and Optimization Techniques -- 2.10. Graphical User Interface [GUI] -- 2.11. Strategies in BCI Applications -- 2.12. Performance Measures of a BCI System -- 2.13. Conclusion -- 3. Fundamentals of Recurrent Quantum Neural Networks -- 3.1. Introduction -- 3.2. Postulates of Quantum Mechanics -- 3.3. Quantum Mechanics and the Schrodinger Wave Equation -- 3.4. Theoretical Concept of the RQNN Model -- 3.5. Traditional RQNN-Based Signal Enhancement -- 3.6. Revised RQNN-Based Signal Enhancement -- 3.7. Discussion -- 3.8. Conclusion.
Brain-computer interface (BCI) technology provides a means of communication that allows individuals with severely impaired movement to communicate with assistive devices using the electroencephalogram (EEG) or other brain signals. The practicality of a BCI has been possible due to advances in multi-disciplinary areas of research related to cognitive neuroscience, brain-imaging techniques and human-computer interfaces. However, two major challenges remain in making BCI for assistive robotics practical for day-to-day use: the inherent lower bandwidth of BCI, and how to best handle the unknown e.
ISBN: 9780128015872Subjects--Topical Terms:
908299
Brain-computer interfaces.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: QP360.7 / .G363 2015eb
Dewey Class. No.: 003.5
National Library of Medicine Call No.: QT 36.2
Brain-computer interfacing for assistive robotics : = electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces /
LDR
:03687nmm a2200325 i 4500
001
2181905
006
m o d
007
cr cn|||||||||
008
191128s2015 enka ob 001 0 eng d
020
$a
9780128015872
$q
(electronic bk.)
020
$a
012801587X
$q
(electronic bk.)
020
$a
9780128015438
020
$a
0128015438
035
$a
(OCoLC)893676502
$z
(OCoLC)899274139
035
$a
els19100029
040
$a
E7B
$b
eng
$e
rda
$e
pn
$c
E7B
$d
OCLCO
$d
YDXCP
$d
COO
$d
OCLCF
$d
OCLCQ
$d
ITD
$d
Z5A
$d
NRC
$d
OCLCO
$d
OCLCA
$d
RRP
$d
AU@
$d
OCLCQ
041
0
$a
eng
050
4
$a
QP360.7
$b
.G363 2015eb
060
4
$a
QT 36.2
082
0 4
$a
003.5
$2
23
100
1
$a
Gandhi, Vaibhav,
$e
author.
$3
3389669
245
1 0
$a
Brain-computer interfacing for assistive robotics :
$b
electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces /
$c
Vaibhav Gandhi.
264
1
$a
London, England :
$b
Academic Press,
$c
2015.
300
$a
1 online resource (259 pages) :
$b
illustrations (some color), tables
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
504
$a
Includes bibliographical references and index.
505
0
$a
1. Introduction -- 1.1. Introduction -- 1.2. Rationale -- 1.3. Objectives -- 2. Interfacing Brain and Machine -- 2.1. Introduction -- 2.2. The Brain and Electrode Placement -- 2.3. Operational Techniques in BCI -- 2.4. Data Acquisition -- 2.5. Preprocessing: A Signal Enhancement Requirement Along with Noise Reduction -- 2.6. Feature Extraction -- 2.7. Classification -- 2.8. Post-processing -- 2.9. Validation and Optimization Techniques -- 2.10. Graphical User Interface [GUI] -- 2.11. Strategies in BCI Applications -- 2.12. Performance Measures of a BCI System -- 2.13. Conclusion -- 3. Fundamentals of Recurrent Quantum Neural Networks -- 3.1. Introduction -- 3.2. Postulates of Quantum Mechanics -- 3.3. Quantum Mechanics and the Schrodinger Wave Equation -- 3.4. Theoretical Concept of the RQNN Model -- 3.5. Traditional RQNN-Based Signal Enhancement -- 3.6. Revised RQNN-Based Signal Enhancement -- 3.7. Discussion -- 3.8. Conclusion.
505
8
$a
4. The Proposed Graphical User Interface (GUI) -- 4.1. Introduction -- 4.2. Overview of the Proposed GUI Within the BCI Framework -- 4.3. Interfacing MATLAB and Visual Basic -- 4.4. Conclusion -- 5. Recurrent Quantum Neural Network (RQNN)- Based EEG Enhancement -- 5.1. Introduction -- 5.2. Traditional RQNN Model for EEG Enhancement -- 5.3. Revised RQNN Model for EEG Signal Enhancement -- 5.4. Towards Subject-Specific RQNN Parameters -- 5.5. Discussion -- 5.6. Conclusion -- 6. Graphical User Interface (GUI) and Robot Operation -- 6.1. Introduction -- 6.2. The EEG Acquisition Process -- 6.3. RQNN-Based EEG Signal Enhancement -- 6.4. Autonomous and Supervised GUI Operation -- 6.5. Maneuvering the Simulated Mobile Robot Using Only MI EEG -- 6.6. Maneuvering the Physical Mobile Robot Using Only MI EEG -- 6.7. Conclusion -- 7. Conclusion -- 7.1. Contributions of the Book -- 7.2. Future Research Directions -- 7.3. Conclusion.
520
$a
Brain-computer interface (BCI) technology provides a means of communication that allows individuals with severely impaired movement to communicate with assistive devices using the electroencephalogram (EEG) or other brain signals. The practicality of a BCI has been possible due to advances in multi-disciplinary areas of research related to cognitive neuroscience, brain-imaging techniques and human-computer interfaces. However, two major challenges remain in making BCI for assistive robotics practical for day-to-day use: the inherent lower bandwidth of BCI, and how to best handle the unknown e.
650
0
$a
Brain-computer interfaces.
$3
908299
650
0
$a
Robotics in medicine.
$3
894868
650
0
$a
Electroencephalography.
$3
543293
650
2
$a
Brain-Computer Interfaces.
$3
3237460
655
4
$a
Electronic books.
$2
lcsh
$3
542853
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128015438
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9370789
電子資源
11.線上閱覽_V
電子書
EB QP360.7 .G363 2015eb
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入