語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Visual and text sentiment analysis t...
~
Chaudhuri, Arindam.
FindBook
Google Book
Amazon
博客來
Visual and text sentiment analysis through hierarchical deep learning networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Visual and text sentiment analysis through hierarchical deep learning networks/ by Arindam Chaudhuri.
作者:
Chaudhuri, Arindam.
出版者:
Singapore :Springer Singapore : : 2019.,
面頁冊數:
xix, 98 p. :ill., digital ;24 cm.
內容註:
Chapter1. Introduction -- Chapter 2. Current State of Art -- Chapter 3. Literature Review -- Chapter 4. Twitter Datasets Used -- Chapter 5. Visual and Text Sentiment Analysis -- Chapter 6. Experimental Setup: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks -- Chapter 7. Twitter Datasets Used -- Chapter 8. Experimental Results -- Chapter 9. Conclusion.
Contained By:
Springer eBooks
標題:
Natural language processing (Computer science) -
電子資源:
https://doi.org/10.1007/978-981-13-7474-6
ISBN:
9789811374746
Visual and text sentiment analysis through hierarchical deep learning networks
Chaudhuri, Arindam.
Visual and text sentiment analysis through hierarchical deep learning networks
[electronic resource] /by Arindam Chaudhuri. - Singapore :Springer Singapore :2019. - xix, 98 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Chapter1. Introduction -- Chapter 2. Current State of Art -- Chapter 3. Literature Review -- Chapter 4. Twitter Datasets Used -- Chapter 5. Visual and Text Sentiment Analysis -- Chapter 6. Experimental Setup: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks -- Chapter 7. Twitter Datasets Used -- Chapter 8. Experimental Results -- Chapter 9. Conclusion.
This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs) Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book's novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.
ISBN: 9789811374746
Standard No.: 10.1007/978-981-13-7474-6doiSubjects--Topical Terms:
565309
Natural language processing (Computer science)
LC Class. No.: QA76.9.N38
Dewey Class. No.: 006.312
Visual and text sentiment analysis through hierarchical deep learning networks
LDR
:03068nmm a2200349 a 4500
001
2180336
003
DE-He213
005
20190406150506.0
006
m d
007
cr nn 008maaau
008
191122s2019 si s 0 eng d
020
$a
9789811374746
$q
(electronic bk.)
020
$a
9789811374739
$q
(paper)
024
7
$a
10.1007/978-981-13-7474-6
$2
doi
035
$a
978-981-13-7474-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.N38
072
7
$a
UNH
$2
bicssc
072
7
$a
COM030000
$2
bisacsh
072
7
$a
UNH
$2
thema
072
7
$a
UND
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.N38
$b
C496 2019
100
1
$a
Chaudhuri, Arindam.
$3
2180020
245
1 0
$a
Visual and text sentiment analysis through hierarchical deep learning networks
$h
[electronic resource] /
$c
by Arindam Chaudhuri.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xix, 98 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Chapter1. Introduction -- Chapter 2. Current State of Art -- Chapter 3. Literature Review -- Chapter 4. Twitter Datasets Used -- Chapter 5. Visual and Text Sentiment Analysis -- Chapter 6. Experimental Setup: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks -- Chapter 7. Twitter Datasets Used -- Chapter 8. Experimental Results -- Chapter 9. Conclusion.
520
$a
This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs) Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book's novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.
650
0
$a
Natural language processing (Computer science)
$3
565309
650
0
$a
Computational linguistics.
$3
606540
650
0
$a
Public opinion
$x
Data processing.
$3
2137801
650
0
$a
Data mining.
$3
562972
650
1 4
$a
Information Storage and Retrieval.
$3
761906
650
2 4
$a
Database Management.
$3
891010
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Pattern Recognition.
$3
891045
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-981-13-7474-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9370183
電子資源
11.線上閱覽_V
電子書
EB QA76.9.N38
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入