語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data, engineering and applications.....
~
Shukla, Rajesh Kumar.
FindBook
Google Book
Amazon
博客來
Data, engineering and applications.. Volume 1
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data, engineering and applications./ edited by Rajesh Kumar Shukla ... [et al.].
其他作者:
Shukla, Rajesh Kumar.
出版者:
Singapore :Springer Singapore : : 2019.,
面頁冊數:
viii, 191 p. :ill. (some col.), digital ;24 cm.
內容註:
A review of Recommender System and related Dimensions -- Collaborative Filtering Techniques in Recommendation Systems -- Predicting Users' Interest through ELM basedCollaborative Filtering -- Application of Community Detection Technique in Text Mining -- Sentiment Analysis on WhatsApp Group Chat using R -- A Recent Survey on Information Hiding Techniques -- Investigation of Feature Selection Techniques on Performance of Automatic Text Categorization -- Identification and Analysis of Future User Interactions Using Some Link Prediction Methods in Social Networks -- Sentiment Prediction of Facebook Status updates of youngsters -- Logistic Regression for the Diagnosis of Cervical Cancer -- Automatic Examination Timetable Scheduling Using Particle Swarm Optimization and Local Search Algorithm -- Personality Trait Identification for Written Texts Using MLNB -- Deep neural network compression via knowledge distillation for embedded vision applications.
Contained By:
Springer eBooks
標題:
Data mining. -
電子資源:
https://doi.org/10.1007/978-981-13-6347-4
ISBN:
9789811363474
Data, engineering and applications.. Volume 1
Data, engineering and applications.
Volume 1[electronic resource] /edited by Rajesh Kumar Shukla ... [et al.]. - Singapore :Springer Singapore :2019. - viii, 191 p. :ill. (some col.), digital ;24 cm.
A review of Recommender System and related Dimensions -- Collaborative Filtering Techniques in Recommendation Systems -- Predicting Users' Interest through ELM basedCollaborative Filtering -- Application of Community Detection Technique in Text Mining -- Sentiment Analysis on WhatsApp Group Chat using R -- A Recent Survey on Information Hiding Techniques -- Investigation of Feature Selection Techniques on Performance of Automatic Text Categorization -- Identification and Analysis of Future User Interactions Using Some Link Prediction Methods in Social Networks -- Sentiment Prediction of Facebook Status updates of youngsters -- Logistic Regression for the Diagnosis of Cervical Cancer -- Automatic Examination Timetable Scheduling Using Particle Swarm Optimization and Local Search Algorithm -- Personality Trait Identification for Written Texts Using MLNB -- Deep neural network compression via knowledge distillation for embedded vision applications.
This book presents a compilation of current trends, technologies, and challenges in connection with Big Data. Many fields of science and engineering are data-driven, or generate huge amounts of data that are ripe for the picking. There are now more sources of data than ever before, and more means of capturing data. At the same time, the sheer volume and complexity of the data have sparked new developments, where many Big Data problems require new solutions. Given its scope, the book offers a valuable reference guide for all graduate students, researchers, and scientists interested in exploring the potential of Big Data applications.
ISBN: 9789811363474
Standard No.: 10.1007/978-981-13-6347-4doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Data, engineering and applications.. Volume 1
LDR
:02590nmm a2200325 a 4500
001
2180314
003
DE-He213
005
20190318165505.0
006
m d
007
cr nn 008maaau
008
191122s2019 si s 0 eng d
020
$a
9789811363474
$q
(electronic bk.)
020
$a
9789811363467
$q
(paper)
024
7
$a
10.1007/978-981-13-6347-4
$2
doi
035
$a
978-981-13-6347-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
D232 2019
245
0 0
$a
Data, engineering and applications.
$n
Volume 1
$h
[electronic resource] /
$c
edited by Rajesh Kumar Shukla ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
viii, 191 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
A review of Recommender System and related Dimensions -- Collaborative Filtering Techniques in Recommendation Systems -- Predicting Users' Interest through ELM basedCollaborative Filtering -- Application of Community Detection Technique in Text Mining -- Sentiment Analysis on WhatsApp Group Chat using R -- A Recent Survey on Information Hiding Techniques -- Investigation of Feature Selection Techniques on Performance of Automatic Text Categorization -- Identification and Analysis of Future User Interactions Using Some Link Prediction Methods in Social Networks -- Sentiment Prediction of Facebook Status updates of youngsters -- Logistic Regression for the Diagnosis of Cervical Cancer -- Automatic Examination Timetable Scheduling Using Particle Swarm Optimization and Local Search Algorithm -- Personality Trait Identification for Written Texts Using MLNB -- Deep neural network compression via knowledge distillation for embedded vision applications.
520
$a
This book presents a compilation of current trends, technologies, and challenges in connection with Big Data. Many fields of science and engineering are data-driven, or generate huge amounts of data that are ripe for the picking. There are now more sources of data than ever before, and more means of capturing data. At the same time, the sheer volume and complexity of the data have sparked new developments, where many Big Data problems require new solutions. Given its scope, the book offers a valuable reference guide for all graduate students, researchers, and scientists interested in exploring the potential of Big Data applications.
650
0
$a
Data mining.
$3
562972
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Big Data.
$3
3134868
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Artificial Intelligence.
$3
769149
700
1
$a
Shukla, Rajesh Kumar.
$3
3386258
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-6347-4
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9370161
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入