語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-utility pattern mining = theory...
~
Fournier-Viger, Philippe.
FindBook
Google Book
Amazon
博客來
High-utility pattern mining = theory, algorithms and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
High-utility pattern mining/ edited by Philippe Fournier-Viger ... [et al.].
其他題名:
theory, algorithms and applications /
其他作者:
Fournier-Viger, Philippe.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
viii, 337 p. :ill., digital ;24 cm.
內容註:
Introduction -- Problem Definition -- Algorithms -- Extensions of the Problem -- Research Opportunities -- Open-Source Implementations -- Conclusion.
Contained By:
Springer eBooks
標題:
Data mining. -
電子資源:
https://doi.org/10.1007/978-3-030-04921-8
ISBN:
9783030049218
High-utility pattern mining = theory, algorithms and applications /
High-utility pattern mining
theory, algorithms and applications /[electronic resource] :edited by Philippe Fournier-Viger ... [et al.]. - Cham :Springer International Publishing :2019. - viii, 337 p. :ill., digital ;24 cm. - Studies in big data,v.512197-6503 ;. - Studies in big data ;v.51..
Introduction -- Problem Definition -- Algorithms -- Extensions of the Problem -- Research Opportunities -- Open-Source Implementations -- Conclusion.
This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data. The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.
ISBN: 9783030049218
Standard No.: 10.1007/978-3-030-04921-8doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343 / H544 2019
Dewey Class. No.: 006.312
High-utility pattern mining = theory, algorithms and applications /
LDR
:02130nmm a2200337 a 4500
001
2178781
003
DE-He213
005
20190705113213.0
006
m d
007
cr nn 008maaau
008
191122s2019 gw s 0 eng d
020
$a
9783030049218
$q
(electronic bk.)
020
$a
9783030049201
$q
(paper)
024
7
$a
10.1007/978-3-030-04921-8
$2
doi
035
$a
978-3-030-04921-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
H544 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
H638 2019
245
0 0
$a
High-utility pattern mining
$h
[electronic resource] :
$b
theory, algorithms and applications /
$c
edited by Philippe Fournier-Viger ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
viii, 337 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.51
505
0
$a
Introduction -- Problem Definition -- Algorithms -- Extensions of the Problem -- Research Opportunities -- Open-Source Implementations -- Conclusion.
520
$a
This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data. The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.
650
0
$a
Data mining.
$3
562972
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
700
1
$a
Fournier-Viger, Philippe.
$3
3383292
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.51.
$3
3383293
856
4 0
$u
https://doi.org/10.1007/978-3-030-04921-8
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9368638
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343 H544 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入