語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Introduction to simple shock waves i...
~
Prunty, Sean.
FindBook
Google Book
Amazon
博客來
Introduction to simple shock waves in air = with numerical solutions using artificial viscosity /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Introduction to simple shock waves in air/ by Sean Prunty.
其他題名:
with numerical solutions using artificial viscosity /
作者:
Prunty, Sean.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
xiii, 247 p. :ill., digital ;24 cm.
內容註:
Brief outline of the equations of fluid flow -- Waves of finite amplitude -- Conditions across the shock: the Rankine-Hugoniot equations -- Numerical treatment of plane shocks -- Spherical shock waves: the self-similar solution -- Numerical treatment of spherical shock waves.
Contained By:
Springer eBooks
標題:
Shock waves. -
電子資源:
https://doi.org/10.1007/978-3-030-02565-6
ISBN:
9783030025656
Introduction to simple shock waves in air = with numerical solutions using artificial viscosity /
Prunty, Sean.
Introduction to simple shock waves in air
with numerical solutions using artificial viscosity /[electronic resource] :by Sean Prunty. - Cham :Springer International Publishing :2019. - xiii, 247 p. :ill., digital ;24 cm. - Shock wave and high pressure phenomena,2197-9529. - Shock wave and high pressure phenomena..
Brief outline of the equations of fluid flow -- Waves of finite amplitude -- Conditions across the shock: the Rankine-Hugoniot equations -- Numerical treatment of plane shocks -- Spherical shock waves: the self-similar solution -- Numerical treatment of spherical shock waves.
This book provides an elementary introduction to some one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner. Artificial viscosity is introduced into the numerical calculations in order to deal with shocks. The presentation is restricted to the finite-difference approach to solve the coupled differential equations of fluid flow as distinct from finite-volume or finite-element methods. This text presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.
ISBN: 9783030025656
Standard No.: 10.1007/978-3-030-02565-6doiSubjects--Topical Terms:
661569
Shock waves.
LC Class. No.: TL574.S4 / P786 2019
Dewey Class. No.: 533.293
Introduction to simple shock waves in air = with numerical solutions using artificial viscosity /
LDR
:02338nmm a2200337 a 4500
001
2178694
003
DE-He213
005
20190703141413.0
006
m d
007
cr nn 008maaau
008
191122s2019 gw s 0 eng d
020
$a
9783030025656
$q
(electronic bk.)
020
$a
9783030025649
$q
(paper)
024
7
$a
10.1007/978-3-030-02565-6
$2
doi
035
$a
978-3-030-02565-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TL574.S4
$b
P786 2019
072
7
$a
TGMF
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TGMF
$2
thema
082
0 4
$a
533.293
$2
23
090
$a
TL574.S4
$b
P972 2019
100
1
$a
Prunty, Sean.
$3
3383122
245
1 0
$a
Introduction to simple shock waves in air
$h
[electronic resource] :
$b
with numerical solutions using artificial viscosity /
$c
by Sean Prunty.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 247 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Shock wave and high pressure phenomena,
$x
2197-9529
505
0
$a
Brief outline of the equations of fluid flow -- Waves of finite amplitude -- Conditions across the shock: the Rankine-Hugoniot equations -- Numerical treatment of plane shocks -- Spherical shock waves: the self-similar solution -- Numerical treatment of spherical shock waves.
520
$a
This book provides an elementary introduction to some one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner. Artificial viscosity is introduced into the numerical calculations in order to deal with shocks. The presentation is restricted to the finite-difference approach to solve the coupled differential equations of fluid flow as distinct from finite-volume or finite-element methods. This text presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.
650
0
$a
Shock waves.
$3
661569
650
1 4
$a
Engineering Fluid Dynamics.
$3
891349
650
2 4
$a
Fluid- and Aerodynamics.
$3
1066670
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
1566152
650
2 4
$a
Mathematical Methods in Physics.
$3
890898
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Shock wave and high pressure phenomena.
$3
1568776
856
4 0
$u
https://doi.org/10.1007/978-3-030-02565-6
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9368551
電子資源
11.線上閱覽_V
電子書
EB TL574.S4 P786 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入