語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learn R for applied statistics = wit...
~
Hui, Eric Goh Ming.
FindBook
Google Book
Amazon
博客來
Learn R for applied statistics = with data visualizations, regressions, and statistics /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learn R for applied statistics/ by Eric Goh Ming Hui.
其他題名:
with data visualizations, regressions, and statistics /
作者:
Hui, Eric Goh Ming.
出版者:
Berkeley, CA :Apress : : 2019.,
面頁冊數:
xv, 243 p. :ill., digital ;24 cm.
內容註:
Chapter 1: Introduction -- Chapter 2: Getting Started -- Chapter 3: Basic -- Chapter 4: Descriptive Statistics -- Chapter 5: Data Visualizations -- Chapter 6: Inferential Statistics and Regressions.
Contained By:
Springer eBooks
標題:
R (Computer program language) -
電子資源:
https://doi.org/10.1007/978-1-4842-4200-1
ISBN:
9781484242001
Learn R for applied statistics = with data visualizations, regressions, and statistics /
Hui, Eric Goh Ming.
Learn R for applied statistics
with data visualizations, regressions, and statistics /[electronic resource] :by Eric Goh Ming Hui. - Berkeley, CA :Apress :2019. - xv, 243 p. :ill., digital ;24 cm.
Chapter 1: Introduction -- Chapter 2: Getting Started -- Chapter 3: Basic -- Chapter 4: Descriptive Statistics -- Chapter 5: Data Visualizations -- Chapter 6: Inferential Statistics and Regressions.
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. You will: Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions.
ISBN: 9781484242001
Standard No.: 10.1007/978-1-4842-4200-1doiSubjects--Topical Terms:
784593
R (Computer program language)
LC Class. No.: QA276.45.R3 / H854 2019
Dewey Class. No.: 519.502855362
Learn R for applied statistics = with data visualizations, regressions, and statistics /
LDR
:02506nmm a2200337 a 4500
001
2178122
003
DE-He213
005
20190618133453.0
006
m d
007
cr nn 008maaau
008
191122s2019 cau s 0 eng d
020
$a
9781484242001
$q
(electronic bk.)
020
$a
9781484241998
$q
(paper)
024
7
$a
10.1007/978-1-4842-4200-1
$2
doi
035
$a
978-1-4842-4200-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.45.R3
$b
H854 2019
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
UMX
$2
thema
072
7
$a
UMC
$2
thema
082
0 4
$a
519.502855362
$2
23
090
$a
QA276.45.R3
$b
H899 2019
100
1
$a
Hui, Eric Goh Ming.
$3
3381976
245
1 0
$a
Learn R for applied statistics
$h
[electronic resource] :
$b
with data visualizations, regressions, and statistics /
$c
by Eric Goh Ming Hui.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
xv, 243 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction -- Chapter 2: Getting Started -- Chapter 3: Basic -- Chapter 4: Descriptive Statistics -- Chapter 5: Data Visualizations -- Chapter 6: Inferential Statistics and Regressions.
520
$a
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. You will: Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions.
650
0
$a
R (Computer program language)
$3
784593
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Programming Languages, Compilers, Interpreters.
$3
891123
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
650
2 4
$a
Open Source.
$3
2210577
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4200-1
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9367982
電子資源
11.線上閱覽_V
電子書
EB QA276.45.R3 H854 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入