語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Clustering methods for big data anal...
~
Nasraoui, Olfa.
FindBook
Google Book
Amazon
博客來
Clustering methods for big data analytics = techniques, toolboxes and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Clustering methods for big data analytics/ edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir.
其他題名:
techniques, toolboxes and applications /
其他作者:
Nasraoui, Olfa.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
ix, 187 p. :ill., digital ;24 cm.
內容註:
Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion.
Contained By:
Springer eBooks
標題:
Big data. -
電子資源:
https://doi.org/10.1007/978-3-319-97864-2
ISBN:
9783319978642
Clustering methods for big data analytics = techniques, toolboxes and applications /
Clustering methods for big data analytics
techniques, toolboxes and applications /[electronic resource] :edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir. - Cham :Springer International Publishing :2019. - ix, 187 p. :ill., digital ;24 cm. - Unsupervised and semi-supervised learning,2522-848X. - Unsupervised and semi-supervised learning..
Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion.
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
ISBN: 9783319978642
Standard No.: 10.1007/978-3-319-97864-2doiSubjects--Topical Terms:
2045508
Big data.
LC Class. No.: QA76.9.B45 / C587 2019
Dewey Class. No.: 005.7
Clustering methods for big data analytics = techniques, toolboxes and applications /
LDR
:02788nmm a2200337 a 4500
001
2177587
003
DE-He213
005
20190530173317.0
006
m d
007
cr nn 008maaau
008
191122s2019 gw s 0 eng d
020
$a
9783319978642
$q
(electronic bk.)
020
$a
9783319978635
$q
(paper)
024
7
$a
10.1007/978-3-319-97864-2
$2
doi
035
$a
978-3-319-97864-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
$b
C587 2019
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
C649 2019
245
0 0
$a
Clustering methods for big data analytics
$h
[electronic resource] :
$b
techniques, toolboxes and applications /
$c
edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
ix, 187 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Unsupervised and semi-supervised learning,
$x
2522-848X
505
0
$a
Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion.
520
$a
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
650
0
$a
Big data.
$3
2045508
650
0
$a
Cluster analysis.
$3
562995
650
0
$a
Data mining.
$3
562972
650
1 4
$a
Communications Engineering, Networks.
$3
891094
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Big Data/Analytics.
$3
2186785
650
2 4
$a
Pattern Recognition.
$3
891045
700
1
$a
Nasraoui, Olfa.
$3
3380846
700
1
$a
Ben N'Cir, Chiheb-Eddine.
$3
3380847
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Unsupervised and semi-supervised learning.
$3
3380848
856
4 0
$u
https://doi.org/10.1007/978-3-319-97864-2
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9367448
電子資源
11.線上閱覽_V
電子書
EB QA76.9.B45 C587 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入