Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Investigating the influence of gold ...
~
DePuccio, Daniel P.
Linked to FindBook
Google Book
Amazon
博客來
Investigating the influence of gold nanoparticles on the photocatalytic and catalytic reactivity of porous tungsten oxide microparticles.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Investigating the influence of gold nanoparticles on the photocatalytic and catalytic reactivity of porous tungsten oxide microparticles./
Author:
DePuccio, Daniel P.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
Description:
207 p.
Notes:
Source: Dissertation Abstracts International, Volume: 78-02(E), Section: B.
Contained By:
Dissertation Abstracts International78-02B(E).
Subject:
Inorganic chemistry. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10160748
ISBN:
9781369156539
Investigating the influence of gold nanoparticles on the photocatalytic and catalytic reactivity of porous tungsten oxide microparticles.
DePuccio, Daniel P.
Investigating the influence of gold nanoparticles on the photocatalytic and catalytic reactivity of porous tungsten oxide microparticles.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 207 p.
Source: Dissertation Abstracts International, Volume: 78-02(E), Section: B.
Thesis (Ph.D.)--The University of Vermont and State Agricultural College, 2016.
This item is not available from ProQuest Dissertations & Theses.
Tungsten oxide (WO3) is a semiconducting transition metal oxide with interesting electronic, structural, and chemical properties that have been exploited in applications including catalysis, gas sensing, electrochromic displays, and solar energy conversion. Nanocrystalline WO3 can absorb visible light to catalyze heterogeneous photooxidation reactions. Also, the acidity of the WO3 surface makes this oxide a good thermal catalyst in the dehydration of alcohols to various industrially relevant chemicals. This dissertation explores the photocatalytic and thermal catalytic reactivity of nanocrystalline porous WO3 microparticles. Furthermore, investigations into the changes in WO3 reactivity are carried out after modifying the porous WO3 particles with gold nanoparticles (Au NPs). On their own, Au NPs are an important class of materials that have had a large impact in many fields such as catalysis, biomedical imaging, and drug delivery. When combined with WO3, however, their influence as part of a composite Au/WO3 catalyst has not been widely studied.
ISBN: 9781369156539Subjects--Topical Terms:
3173556
Inorganic chemistry.
Investigating the influence of gold nanoparticles on the photocatalytic and catalytic reactivity of porous tungsten oxide microparticles.
LDR
:04404nmm a2200361 4500
001
2165028
005
20181129115237.5
008
190424s2016 ||||||||||||||||| ||eng d
020
$a
9781369156539
035
$a
(MiAaPQ)AAI10160748
035
$a
(MiAaPQ)uvm:10442
035
$a
AAI10160748
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
DePuccio, Daniel P.
$3
3353092
245
1 0
$a
Investigating the influence of gold nanoparticles on the photocatalytic and catalytic reactivity of porous tungsten oxide microparticles.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
207 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-02(E), Section: B.
500
$a
Adviser: Christopher C. Landry.
502
$a
Thesis (Ph.D.)--The University of Vermont and State Agricultural College, 2016.
506
$a
This item is not available from ProQuest Dissertations & Theses.
520
$a
Tungsten oxide (WO3) is a semiconducting transition metal oxide with interesting electronic, structural, and chemical properties that have been exploited in applications including catalysis, gas sensing, electrochromic displays, and solar energy conversion. Nanocrystalline WO3 can absorb visible light to catalyze heterogeneous photooxidation reactions. Also, the acidity of the WO3 surface makes this oxide a good thermal catalyst in the dehydration of alcohols to various industrially relevant chemicals. This dissertation explores the photocatalytic and thermal catalytic reactivity of nanocrystalline porous WO3 microparticles. Furthermore, investigations into the changes in WO3 reactivity are carried out after modifying the porous WO3 particles with gold nanoparticles (Au NPs). On their own, Au NPs are an important class of materials that have had a large impact in many fields such as catalysis, biomedical imaging, and drug delivery. When combined with WO3, however, their influence as part of a composite Au/WO3 catalyst has not been widely studied.
520
$a
Porous WO3 microparticles were first prepared using mesoporous silica (SiO2) spheres as hard templates and the physical properties of these materials were fully characterized. A facile sonochemical method was used to deposit Au NPs on the WO3 surface. Using methylene blue (MB) as a photocatalytic probe, the reaction products and the catalytic activity of WO3 and Au/WO3 catalysts were compared. Composite Au/WO3 photocatalysts exhibited significantly greater rates of MB degradation compared to pure WO3. Interestingly, the observed mechanism of MB degradation was not vastly different between the two types of catalysts.
520
$a
The gas-phase photocatalytic oxidation of methanol (MeOH) was studied to further understand the role of WO3 and Au NPs in these photocatalysts. Porous WO3 showed greater photooxidation rates compared to bulk WO3 because of its increased active surface area. Pure WO 3 and Au NPs on porous SiO2 (SiO2-Au) were both active MeOH photooxidation catalysts and were highly selective to formaldehyde (HCHO) and methyl formate (MF), respectively. Two different mechanisms, namely band gap excitation of WO3 and surface plasmon resonance (SPR) on Au NPs, were responsible for this result. Again, the Au/WO3 composite catalysts showed greater photocatalytic activity than WO3, which increased with Au loading. This high activity led to the complete photooxidation of MeOH to carbon dioxide (CO2) over Au/WO3 catalysts.
520
$a
Finally, the thermal catalytic transformation of MeOH under aerobic conditions was carried out to further characterize the acid and redox active sites of WO3 and Au/WO3 catalysts. Pure WO3 was highly selective for MeOH dehydration to dimethyl ether (DME), whereas Au/WO 3 showed increased oxidation selectivity to products such as HCHO, FM, and COx. The Au NPs increased the reducibility of the WO3 species, which made surface oxygen atoms more labile and reactive towards MeOH. Also, the WO3 facilitated the formation of cationic Au (Au delta +) species. This combination of effects created through a strong Au/WO 3 interaction increased the activity of WO3 species, but it decreased the activity of the Au NPs.
590
$a
School code: 0243.
650
4
$a
Inorganic chemistry.
$3
3173556
650
4
$a
Materials science.
$3
543314
650
4
$a
Nanoscience.
$3
587832
690
$a
0488
690
$a
0794
690
$a
0565
710
2
$a
The University of Vermont and State Agricultural College.
$b
Chemistry.
$3
3353093
773
0
$t
Dissertation Abstracts International
$g
78-02B(E).
790
$a
0243
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10160748
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9364575
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login