語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Missing Data in Meta-Analysis.
~
University of Rochester., Medicine and Dentistry.
FindBook
Google Book
Amazon
博客來
Missing Data in Meta-Analysis.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Missing Data in Meta-Analysis./
作者:
Chowdhry, Amit Kumar.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
162 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
Contained By:
Dissertation Abstracts International77-08B(E).
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10038697
ISBN:
9781339549446
Missing Data in Meta-Analysis.
Chowdhry, Amit Kumar.
Missing Data in Meta-Analysis.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 162 p.
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
Thesis (Ph.D.)--University of Rochester, 2016.
This item is not available from ProQuest Dissertations & Theses.
Missing data is a problem seen throughout applied statistical analysis. Meta-analysis has many important applications throughout a wide variety of areas of research, including medicine, epidemiology, and the social sciences. Our review of the literature suggests that there exists a wide gap between state-of-the-art methods to accommodate missing data and current practice in meta-analysis. The widely used methodology in meta-analysis is only valid under very strict assumptions, and even then not necessarily as powerful as principled methods. This dissertation proposes multiple-imputation-based methods to handle missing sample variances, missing correlations from cross-over studies, and missing covariates in meta-regression. Our work has shown that the use of principled missing data methods will improve the practice of meta-analysis in the setting of missing data.
ISBN: 9781339549446Subjects--Topical Terms:
517247
Statistics.
Missing Data in Meta-Analysis.
LDR
:01865nmm a2200313 4500
001
2161221
005
20180823122923.5
008
190424s2016 ||||||||||||||||| ||eng d
020
$a
9781339549446
035
$a
(MiAaPQ)AAI10038697
035
$a
(MiAaPQ)rochester:11131
035
$a
AAI10038697
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chowdhry, Amit Kumar.
$3
3349185
245
1 0
$a
Missing Data in Meta-Analysis.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
162 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
500
$a
Adviser: Michael P. McDermott.
502
$a
Thesis (Ph.D.)--University of Rochester, 2016.
506
$a
This item is not available from ProQuest Dissertations & Theses.
520
$a
Missing data is a problem seen throughout applied statistical analysis. Meta-analysis has many important applications throughout a wide variety of areas of research, including medicine, epidemiology, and the social sciences. Our review of the literature suggests that there exists a wide gap between state-of-the-art methods to accommodate missing data and current practice in meta-analysis. The widely used methodology in meta-analysis is only valid under very strict assumptions, and even then not necessarily as powerful as principled methods. This dissertation proposes multiple-imputation-based methods to handle missing sample variances, missing correlations from cross-over studies, and missing covariates in meta-regression. Our work has shown that the use of principled missing data methods will improve the practice of meta-analysis in the setting of missing data.
590
$a
School code: 0188.
650
4
$a
Statistics.
$3
517247
650
4
$a
Biostatistics.
$3
1002712
690
$a
0463
690
$a
0308
710
2
$a
University of Rochester.
$b
Medicine and Dentistry.
$3
3265809
773
0
$t
Dissertation Abstracts International
$g
77-08B(E).
790
$a
0188
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10038697
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9360768
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入