語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Clustering Methods for Mixed-Type Data.
~
Foss, Alexander Hawthorne.
FindBook
Google Book
Amazon
博客來
Clustering Methods for Mixed-Type Data.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Clustering Methods for Mixed-Type Data./
作者:
Foss, Alexander Hawthorne.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
260 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Contained By:
Dissertation Abstracts International78-11B(E).
標題:
Biostatistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10278781
ISBN:
9780355046106
Clustering Methods for Mixed-Type Data.
Foss, Alexander Hawthorne.
Clustering Methods for Mixed-Type Data.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 260 p.
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Thesis (Ph.D.)--State University of New York at Buffalo, 2017.
As massive data sets become increasingly common, much attention has been paid to issues relating to large sample size. However, massive data sets often involve a large number of variables that are often heterogeneous in nature. In this dissertation I seek to develop novel techniques for clustering mixed-type data consisting of continuous and nominal variables. I first review the literature on clustering mixed-type data and identify the strengths and weaknesses of existing methods. I next propose a clustering technique (KAMILA) that overcomes the central weaknesses in current state-of-the-art methods. This novel method is suitable for very large data sets, and is compatible with a map-reduce computing framework; implementations in both R and Hadoop are discussed. Finally, I discuss the related issues of variable weighting and variable selection in clustering mixed-type data.
ISBN: 9780355046106Subjects--Topical Terms:
1002712
Biostatistics.
Clustering Methods for Mixed-Type Data.
LDR
:01838nmm a2200313 4500
001
2156402
005
20180517112609.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355046106
035
$a
(MiAaPQ)AAI10278781
035
$a
(MiAaPQ)buffalo:15083
035
$a
AAI10278781
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Foss, Alexander Hawthorne.
$3
3344167
245
1 0
$a
Clustering Methods for Mixed-Type Data.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
260 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
500
$a
Adviser: Marianthi Markatou.
502
$a
Thesis (Ph.D.)--State University of New York at Buffalo, 2017.
520
$a
As massive data sets become increasingly common, much attention has been paid to issues relating to large sample size. However, massive data sets often involve a large number of variables that are often heterogeneous in nature. In this dissertation I seek to develop novel techniques for clustering mixed-type data consisting of continuous and nominal variables. I first review the literature on clustering mixed-type data and identify the strengths and weaknesses of existing methods. I next propose a clustering technique (KAMILA) that overcomes the central weaknesses in current state-of-the-art methods. This novel method is suitable for very large data sets, and is compatible with a map-reduce computing framework; implementations in both R and Hadoop are discussed. Finally, I discuss the related issues of variable weighting and variable selection in clustering mixed-type data.
590
$a
School code: 0656.
650
4
$a
Biostatistics.
$3
1002712
650
4
$a
Statistics.
$3
517247
650
4
$a
Computer science.
$3
523869
690
$a
0308
690
$a
0463
690
$a
0984
710
2
$a
State University of New York at Buffalo.
$b
Biostatistics.
$3
2099967
773
0
$t
Dissertation Abstracts International
$g
78-11B(E).
790
$a
0656
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10278781
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9355949
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入