Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
A Large Sieve Zero Density Estimate ...
~
Lewis, Paul Dunbar.
Linked to FindBook
Google Book
Amazon
博客來
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
Record Type:
Electronic resources : Monograph/item
Title/Author:
A Large Sieve Zero Density Estimate for Maass Cusp Forms./
Author:
Lewis, Paul Dunbar.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
Description:
56 p.
Notes:
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Contained By:
Dissertation Abstracts International78-09B(E).
Subject:
Theoretical mathematics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10274166
ISBN:
9781369734355
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
Lewis, Paul Dunbar.
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 56 p.
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Thesis (Ph.D.)--Columbia University, 2017.
The large sieve method has been used extensively, beginning with Bombieri in 1965, to provide bounds on the number of zeros of Dirichlet L-functions near the line sigma = 1. Using the Kuznetsov trace formula and the work of Deshouillers and Iwaniec on Kloosterman sums, it is possible to derive large sieve inequalities for the Fourier coefficients of Maass cusp forms, which may then similarly be used to study the corresponding Hecke-Maass L-functions. Following an approach developed by Gallagher for Dirichlet L-functions, this thesis shows how the large sieve method may be used to prove a zero density estimate, averaged over the Laplace eigenvalues, for Maass cusp forms of weight zero for the congruence subgroup Gamma0(q) for any positive integer q..
ISBN: 9781369734355Subjects--Topical Terms:
3173530
Theoretical mathematics.
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
LDR
:01665nmm a2200289 4500
001
2155410
005
20180426091046.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9781369734355
035
$a
(MiAaPQ)AAI10274166
035
$a
(MiAaPQ)columbia:13938
035
$a
AAI10274166
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lewis, Paul Dunbar.
$3
3343148
245
1 2
$a
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
56 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
500
$a
Adviser: Dorian Goldfeld.
502
$a
Thesis (Ph.D.)--Columbia University, 2017.
520
$a
The large sieve method has been used extensively, beginning with Bombieri in 1965, to provide bounds on the number of zeros of Dirichlet L-functions near the line sigma = 1. Using the Kuznetsov trace formula and the work of Deshouillers and Iwaniec on Kloosterman sums, it is possible to derive large sieve inequalities for the Fourier coefficients of Maass cusp forms, which may then similarly be used to study the corresponding Hecke-Maass L-functions. Following an approach developed by Gallagher for Dirichlet L-functions, this thesis shows how the large sieve method may be used to prove a zero density estimate, averaged over the Laplace eigenvalues, for Maass cusp forms of weight zero for the congruence subgroup Gamma0(q) for any positive integer q..
590
$a
School code: 0054.
650
4
$a
Theoretical mathematics.
$3
3173530
690
$a
0642
710
2
$a
Columbia University.
$b
Mathematics.
$3
1684292
773
0
$t
Dissertation Abstracts International
$g
78-09B(E).
790
$a
0054
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10274166
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9354957
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login