語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big Data analytics in static and str...
~
Chen, Peng.
FindBook
Google Book
Amazon
博客來
Big Data analytics in static and streaming provenance.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big Data analytics in static and streaming provenance./
作者:
Chen, Peng.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
191 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-09(E), Section: B.
Contained By:
Dissertation Abstracts International77-09B(E).
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10103287
ISBN:
9781339668703
Big Data analytics in static and streaming provenance.
Chen, Peng.
Big Data analytics in static and streaming provenance.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 191 p.
Source: Dissertation Abstracts International, Volume: 77-09(E), Section: B.
Thesis (Ph.D.)--Indiana University, 2016.
With recent technological and computational advances, scientists increasingly integrate sensors and model simulations to understand spatial, temporal, social, and ecological relationships at unprecedented scale. Data provenance traces relationships of entities over time, thus providing a unique view on over-time behavior under study. However, provenance can be overwhelming in both volume and complexity; the now forecasting potential of provenance creates additional demands.
ISBN: 9781339668703Subjects--Topical Terms:
523869
Computer science.
Big Data analytics in static and streaming provenance.
LDR
:02504nmm a2200301 4500
001
2154550
005
20180419104821.5
008
190424s2016 ||||||||||||||||| ||eng d
020
$a
9781339668703
035
$a
(MiAaPQ)AAI10103287
035
$a
(MiAaPQ)indiana:14031
035
$a
AAI10103287
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chen, Peng.
$3
1910191
245
1 0
$a
Big Data analytics in static and streaming provenance.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
191 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-09(E), Section: B.
500
$a
Adviser: Beth A. Plale.
502
$a
Thesis (Ph.D.)--Indiana University, 2016.
520
$a
With recent technological and computational advances, scientists increasingly integrate sensors and model simulations to understand spatial, temporal, social, and ecological relationships at unprecedented scale. Data provenance traces relationships of entities over time, thus providing a unique view on over-time behavior under study. However, provenance can be overwhelming in both volume and complexity; the now forecasting potential of provenance creates additional demands.
520
$a
This dissertation focuses on Big Data analytics of static and streaming provenance. It develops filters and a non-preprocessing slicing technique for in-situ querying of static provenance. It presents a stream processing framework for online processing of provenance data at high receiving rate. While the former is sufficient for answering queries that are given prior to the application start (forward queries), the latter deals with queries whose targets are unknown beforehand (backward queries). Finally, it explores data mining on large collections of provenance and proposes a temporal representation of provenance that can reduce the high dimensionality while effectively supporting mining tasks like clustering, classification and association rules mining; and the temporal representation can be further applied to streaming provenance as well. The proposed techniques are verified through software prototypes applied to Big Data provenance captured from computer network data, weather models, ocean models, remote (satellite) imagery data, and agent-based simulations of agricultural decision making.
590
$a
School code: 0093.
650
4
$a
Computer science.
$3
523869
690
$a
0984
710
2
$a
Indiana University.
$b
Computer Sciences.
$3
1018516
773
0
$t
Dissertation Abstracts International
$g
77-09B(E).
790
$a
0093
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10103287
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9354097
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入