語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Interpreting quantitative data
~
Byrne, D. S. (1947-)
FindBook
Google Book
Amazon
博客來
Interpreting quantitative data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Interpreting quantitative data/ David Byrne.
作者:
Byrne, D. S.
出版者:
London ;SAGE, : 2002.,
面頁冊數:
x, 176 p. :ill.
內容註:
Machine generated contents note: Introduction 1 -- 1 Interpreting the Real and Describing the Complex: -- Why We Have to Measure 12 -- Positivism, realism and complexity 14 -- Naturalism - a soft foundationalist argument 17 -- There are no universals but, nevertheless, we can know 19 -- Models and measures: a first pass 21 -- Contingency and method - retroduction and retrodiction 25 -- Conclusion 27 -- 2 The Nature of Measurement: What We Measure and -- How We Measure 29 -- Death to the variable 29 -- State space 32 -- Classification 34 -- Sensible and useful measuring 37 -- Conclusion 41 -- 3 The State's Measurements: The Construction and -- Use of Official Statistics 44 -- The history of statistics as measures 45 -- Official and semi-official statistics 49 -- Social indicators 52 -- Tracing individuals 56 -- Secondary data analysis 57 -- Sources 57 -- Conclusion 58 -- 4 Measuring the Complex World: The Character of Social Surveys 61 -- Knowledge production - the survey as process 63 -- Models from surveys - beyond the flowgraph? 66 -- Representative before random - sampling in the real world 72 -- Conclusion 77 -- 5 Probability and Quantitative Reasoning 79 -- Objective probability versus the science of clues 80 -- Single case probabilities - back to the specific 84 -- Gold standard - or dross? 84 -- Understanding Head Start 88 -- Probabilistic reasoning in relation to non-experimental data 90 -- Randomness, probability, significance and investigation 92 -- Conclusion 93 -- 6 Interpreting Measurements: Exploring, Describing and Classifying 95 -- Basic exploration and description 96 -- Making sets of categories - taxonomy as social exploration 99 -- Can classifying help us to sort out causal processes? 105 -- Conclusion 110 -- 7 Linear Modelling: Clues as to Causes 112 -- Statistical models 113 -- Flowgraphs: partial correlation and path analysis 116 -- Working with latent variables - making things out of things -- that don't exist anyhow 117 -- Multi-level models 120 -- Statistical black boxes - Markov chains as an example 122 -- Loglinear techniques - exploring for interaction 123 -- Conclusion 128 -- 8 Coping with Non-linearity and Emergence: Simulation and -- Neural Nets 130 -- Simulation - interpreting through virtual worlds 131 -- Micro-simulation - projecting on the basis of aggregation 133 -- Multi-agent models - interacting entities 135 -- Neural nets are not models but inductive empiricists 139 -- Models as icons, which are also tools 141 -- Using the tools 142 -- Conclusion 143 -- 9 Qualitative Modelling: Issues of Meaning and Cause 145 -- From analytic induction through grounded theory to computer -- modelling - qualitative exploration of cause 147 -- Coding qualitative materials 150 -- Qualitative Comparative Analysis (QCA) - a Boolean approach 154 -- Iconic modelling 157 -- Integrative method 159 -- Conclusion 160 -- Conclusion 162 -- Down with: 162 -- Up with: 163 -- Action theories imply action164.
標題:
Research. -
電子資源:
https://ebookcentral.proquest.com/lib/ndhu/detail.action?docID=370507Click to View
Interpreting quantitative data
Byrne, D. S.1947-
Interpreting quantitative data
[electronic resource] /David Byrne. - London ;SAGE,2002. - x, 176 p. :ill.
Includes bibliographical references (p. [166]-170) and index.
Machine generated contents note: Introduction 1 -- 1 Interpreting the Real and Describing the Complex: -- Why We Have to Measure 12 -- Positivism, realism and complexity 14 -- Naturalism - a soft foundationalist argument 17 -- There are no universals but, nevertheless, we can know 19 -- Models and measures: a first pass 21 -- Contingency and method - retroduction and retrodiction 25 -- Conclusion 27 -- 2 The Nature of Measurement: What We Measure and -- How We Measure 29 -- Death to the variable 29 -- State space 32 -- Classification 34 -- Sensible and useful measuring 37 -- Conclusion 41 -- 3 The State's Measurements: The Construction and -- Use of Official Statistics 44 -- The history of statistics as measures 45 -- Official and semi-official statistics 49 -- Social indicators 52 -- Tracing individuals 56 -- Secondary data analysis 57 -- Sources 57 -- Conclusion 58 -- 4 Measuring the Complex World: The Character of Social Surveys 61 -- Knowledge production - the survey as process 63 -- Models from surveys - beyond the flowgraph? 66 -- Representative before random - sampling in the real world 72 -- Conclusion 77 -- 5 Probability and Quantitative Reasoning 79 -- Objective probability versus the science of clues 80 -- Single case probabilities - back to the specific 84 -- Gold standard - or dross? 84 -- Understanding Head Start 88 -- Probabilistic reasoning in relation to non-experimental data 90 -- Randomness, probability, significance and investigation 92 -- Conclusion 93 -- 6 Interpreting Measurements: Exploring, Describing and Classifying 95 -- Basic exploration and description 96 -- Making sets of categories - taxonomy as social exploration 99 -- Can classifying help us to sort out causal processes? 105 -- Conclusion 110 -- 7 Linear Modelling: Clues as to Causes 112 -- Statistical models 113 -- Flowgraphs: partial correlation and path analysis 116 -- Working with latent variables - making things out of things -- that don't exist anyhow 117 -- Multi-level models 120 -- Statistical black boxes - Markov chains as an example 122 -- Loglinear techniques - exploring for interaction 123 -- Conclusion 128 -- 8 Coping with Non-linearity and Emergence: Simulation and -- Neural Nets 130 -- Simulation - interpreting through virtual worlds 131 -- Micro-simulation - projecting on the basis of aggregation 133 -- Multi-agent models - interacting entities 135 -- Neural nets are not models but inductive empiricists 139 -- Models as icons, which are also tools 141 -- Using the tools 142 -- Conclusion 143 -- 9 Qualitative Modelling: Issues of Meaning and Cause 145 -- From analytic induction through grounded theory to computer -- modelling - qualitative exploration of cause 147 -- Coding qualitative materials 150 -- Qualitative Comparative Analysis (QCA) - a Boolean approach 154 -- Iconic modelling 157 -- Integrative method 159 -- Conclusion 160 -- Conclusion 162 -- Down with: 162 -- Up with: 163 -- Action theories imply action164.
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
Nat. Bib. No.: GBA1-V1915Subjects--Topical Terms:
531893
Research.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: HA35 / .B97 2002
Dewey Class. No.: 300.72
Interpreting quantitative data
LDR
:04064nmm 2200313 a 4500
001
2147376
003
MiAaPQ
006
m o d |
007
cr cn|||||||||
008
190311s2002 enka sb 001 0 eng d
010
$z
2002514390
015
$a
GBA1-V1915
020
$z
0761962611
020
$z
076196262X
035
$a
(MiAaPQ)EBC370507
035
$a
(Au-PeEL)EBL370507
035
$a
(CaPaEBR)ebr10256800
035
$a
(CaONFJC)MIL189764
035
$a
(OCoLC)476205712
035
$a
EBC370507
040
$a
MiAaPQ
$c
MiAaPQ
$d
MiAaPQ
050
4
$a
HA35
$b
.B97 2002
082
0 4
$a
300.72
$2
21
100
1
$a
Byrne, D. S.
$q
(David S.),
$d
1947-
$3
3334010
245
1 0
$a
Interpreting quantitative data
$h
[electronic resource] /
$c
David Byrne.
260
$a
London ;
$a
Thousand Oaks, Calif. :
$b
SAGE,
$c
2002.
300
$a
x, 176 p. :
$b
ill.
504
$a
Includes bibliographical references (p. [166]-170) and index.
505
8
$a
Machine generated contents note: Introduction 1 -- 1 Interpreting the Real and Describing the Complex: -- Why We Have to Measure 12 -- Positivism, realism and complexity 14 -- Naturalism - a soft foundationalist argument 17 -- There are no universals but, nevertheless, we can know 19 -- Models and measures: a first pass 21 -- Contingency and method - retroduction and retrodiction 25 -- Conclusion 27 -- 2 The Nature of Measurement: What We Measure and -- How We Measure 29 -- Death to the variable 29 -- State space 32 -- Classification 34 -- Sensible and useful measuring 37 -- Conclusion 41 -- 3 The State's Measurements: The Construction and -- Use of Official Statistics 44 -- The history of statistics as measures 45 -- Official and semi-official statistics 49 -- Social indicators 52 -- Tracing individuals 56 -- Secondary data analysis 57 -- Sources 57 -- Conclusion 58 -- 4 Measuring the Complex World: The Character of Social Surveys 61 -- Knowledge production - the survey as process 63 -- Models from surveys - beyond the flowgraph? 66 -- Representative before random - sampling in the real world 72 -- Conclusion 77 -- 5 Probability and Quantitative Reasoning 79 -- Objective probability versus the science of clues 80 -- Single case probabilities - back to the specific 84 -- Gold standard - or dross? 84 -- Understanding Head Start 88 -- Probabilistic reasoning in relation to non-experimental data 90 -- Randomness, probability, significance and investigation 92 -- Conclusion 93 -- 6 Interpreting Measurements: Exploring, Describing and Classifying 95 -- Basic exploration and description 96 -- Making sets of categories - taxonomy as social exploration 99 -- Can classifying help us to sort out causal processes? 105 -- Conclusion 110 -- 7 Linear Modelling: Clues as to Causes 112 -- Statistical models 113 -- Flowgraphs: partial correlation and path analysis 116 -- Working with latent variables - making things out of things -- that don't exist anyhow 117 -- Multi-level models 120 -- Statistical black boxes - Markov chains as an example 122 -- Loglinear techniques - exploring for interaction 123 -- Conclusion 128 -- 8 Coping with Non-linearity and Emergence: Simulation and -- Neural Nets 130 -- Simulation - interpreting through virtual worlds 131 -- Micro-simulation - projecting on the basis of aggregation 133 -- Multi-agent models - interacting entities 135 -- Neural nets are not models but inductive empiricists 139 -- Models as icons, which are also tools 141 -- Using the tools 142 -- Conclusion 143 -- 9 Qualitative Modelling: Issues of Meaning and Cause 145 -- From analytic induction through grounded theory to computer -- modelling - qualitative exploration of cause 147 -- Coding qualitative materials 150 -- Qualitative Comparative Analysis (QCA) - a Boolean approach 154 -- Iconic modelling 157 -- Integrative method 159 -- Conclusion 160 -- Conclusion 162 -- Down with: 162 -- Up with: 163 -- Action theories imply action164.
533
$a
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
650
0
$a
Research.
$3
531893
650
0
$a
Methodology.
$3
532365
650
0
$a
Social sciences
$x
Statistical methods.
$3
529420
655
4
$a
Electronic books.
$2
lcsh
$3
542853
710
2
$a
ProQuest (Firm)
$3
2196311
856
4 0
$u
https://ebookcentral.proquest.com/lib/ndhu/detail.action?docID=370507
$z
Click to View
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9348516
電子資源
11.線上閱覽_V
電子書
EB HA35 .B97 2002
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入