語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Background subtraction : = theory an...
~
Elgammal, Ahmed,
FindBook
Google Book
Amazon
博客來
Background subtraction : = theory and practice /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Background subtraction :/ Ahmed Elgammal
其他題名:
theory and practice /
作者:
Elgammal, Ahmed,
面頁冊數:
1 online resource (xvi, 67 pages) :illustrations
內容註:
1. Object detection and segmentation in videos -- 1.1 Characterization of video data -- 1.2 What is foreground and what is background? -- 1.3 The space of solutions -- 1.3.1 Foreground detection vs. background subtraction -- 1.3.2 Video segmentation and motion segmentation -- 1.4 Background subtraction concept
內容註:
2. Background subtraction from a stationary camera -- 2.1 Introduction -- 2.2 Challenges in scene modeling -- 2.3 Probabilistic background modeling -- 2.4 Parametric background models -- 2.4.1 A single Gaussian background modeL -- 2.4.2 A mixture Gaussian background model -- 2.5 Non-parametric background models -- 2.5.1 Kernel density estimation (KDE) -- 2.5.2 KDE background models -- 2.5.3 KDE-background practice and other non-parametric models -- 2.6 Other background models -- 2.6.1 Predictive-filtering background models -- 2.6.2 Hidden Markov model background subtraction -- 2.6.3 Subspace methods for background subtraction -- 2.6.4 Neural network models -- 2.7 Features for background modeling -- 2.8 Shadow suppression -- 2.8.1 Color spaces and achromatic shadows -- 2.8.2 Algorithmic approaches for shadow detection -- 2.9 Tradeoffs in background maintenance
內容註:
3. Background subtraction from a moving camera -- 3.1 Difficulties in the moving-camera case -- 3.2 Motion-compensation -based background-subtraction techniques -- 3.3 Motion segmentation -- 3.4 Layered-motion segmentation -- 3.5 Motion- segmentation-based background-subtraction approaches -- 3.5.1 Orthographic camera, factorization-based background models -- 3.5.2 Dense Bayesian appearance modeling -- 3.5.3 Moving away from the affine assumption, manifold-based background models
內容註:
Bibliography -- Author's biography
標題:
Image stabilization -
電子資源:
http://portal.igpublish.com/iglibrary/search/MCPB0000757.html
ISBN:
9781627054416
Background subtraction : = theory and practice /
Elgammal, Ahmed,
Background subtraction :
theory and practice /Ahmed Elgammal - 1 online resource (xvi, 67 pages) :illustrations - Synthesis lectures on computer vision,#62153-1064 ;. - Synthesis lectures on computer vision ;#6..
Includes bibliographical references (pages 55-66)
1. Object detection and segmentation in videos -- 1.1 Characterization of video data -- 1.2 What is foreground and what is background? -- 1.3 The space of solutions -- 1.3.1 Foreground detection vs. background subtraction -- 1.3.2 Video segmentation and motion segmentation -- 1.4 Background subtraction concept
Background subtraction is a widely used concept for detection of moving objects in videos. In the last two decades there has been a lot of development in designing algorithms for background subtraction, as well as wide use of these algorithms in various important applications, such as visual surveillance, sports video analysis, motion capture, etc. Various statistical approaches have been proposed to model scene backgrounds. The concept of background subtraction also has been extended to detect objects from videos captured from moving cameras. This book reviews the concept and practice of background subtraction. We discuss several traditional statistical background subtraction models, including the widely used parametric Gaussian mixture models and non-parametric models. We also discuss the issue of shadow suppression, which is essential for human motion analysis applications. This book discusses approaches and tradeoffs for background maintenance
ISBN: 9781627054416
Standard No.: 10.2200 / S00613ED1V01Y201411COV006doiSubjects--Topical Terms:
3314895
Image stabilization
Index Terms--Genre/Form:
959526
Electronic books
Dewey Class. No.: 621.367
Background subtraction : = theory and practice /
LDR
:04253nmm0a2200373 ib450
001
2139185
005
20181023234118.0
006
m o d
007
cr cnu---unuuu
008
181127s2015 caua fob 000 0 eng d
020
$a
9781627054416
$q
(electronic bk.)
020
$a
1627054413
$q
(electronic bk.)
020
$z
9781627054409
$q
(print)
020
$z
1627054405
024
7
$a
10.2200 / S00613ED1V01Y201411COV006
$2
doi
035
$a
IGP290288
040
$a
CaBNVSL
$b
eng
$e
rda
$e
pn
$c
J2I
$d
J2I
$d
YDXCP
$d
UIU
$d
WAU
$d
EBLCP
$d
UMI
$d
NTBC
082
0 4
$a
621.367
$2
23
100
1
$a
Elgammal, Ahmed,
$e
author
$3
3314893
245
1 0
$a
Background subtraction :
$b
theory and practice /
$c
Ahmed Elgammal
264
1
$a
San Rafael, California :
$b
Morgan & Claypool Publishers,
$c
[2015]
300
$a
1 online resource (xvi, 67 pages) :
$b
illustrations
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
0
$a
Synthesis lectures on computer vision,
$x
2153-1064 ;
$v
#6
504
$a
Includes bibliographical references (pages 55-66)
505
0
$a
1. Object detection and segmentation in videos -- 1.1 Characterization of video data -- 1.2 What is foreground and what is background? -- 1.3 The space of solutions -- 1.3.1 Foreground detection vs. background subtraction -- 1.3.2 Video segmentation and motion segmentation -- 1.4 Background subtraction concept
505
8
$a
2. Background subtraction from a stationary camera -- 2.1 Introduction -- 2.2 Challenges in scene modeling -- 2.3 Probabilistic background modeling -- 2.4 Parametric background models -- 2.4.1 A single Gaussian background modeL -- 2.4.2 A mixture Gaussian background model -- 2.5 Non-parametric background models -- 2.5.1 Kernel density estimation (KDE) -- 2.5.2 KDE background models -- 2.5.3 KDE-background practice and other non-parametric models -- 2.6 Other background models -- 2.6.1 Predictive-filtering background models -- 2.6.2 Hidden Markov model background subtraction -- 2.6.3 Subspace methods for background subtraction -- 2.6.4 Neural network models -- 2.7 Features for background modeling -- 2.8 Shadow suppression -- 2.8.1 Color spaces and achromatic shadows -- 2.8.2 Algorithmic approaches for shadow detection -- 2.9 Tradeoffs in background maintenance
505
8
$a
3. Background subtraction from a moving camera -- 3.1 Difficulties in the moving-camera case -- 3.2 Motion-compensation -based background-subtraction techniques -- 3.3 Motion segmentation -- 3.4 Layered-motion segmentation -- 3.5 Motion- segmentation-based background-subtraction approaches -- 3.5.1 Orthographic camera, factorization-based background models -- 3.5.2 Dense Bayesian appearance modeling -- 3.5.3 Moving away from the affine assumption, manifold-based background models
505
8
$a
Bibliography -- Author's biography
520
3
$a
Background subtraction is a widely used concept for detection of moving objects in videos. In the last two decades there has been a lot of development in designing algorithms for background subtraction, as well as wide use of these algorithms in various important applications, such as visual surveillance, sports video analysis, motion capture, etc. Various statistical approaches have been proposed to model scene backgrounds. The concept of background subtraction also has been extended to detect objects from videos captured from moving cameras. This book reviews the concept and practice of background subtraction. We discuss several traditional statistical background subtraction models, including the widely used parametric Gaussian mixture models and non-parametric models. We also discuss the issue of shadow suppression, which is essential for human motion analysis applications. This book discusses approaches and tradeoffs for background maintenance
520
3
$a
This book also reviews many of the recent developments in background subtraction paradigm. Recent advances in developing algorithms for background subtraction from moving cameras are described, including motion-compensation-based approaches and motion-segmentation-based approaches
588
$a
Online resource; title from PDF title page (Morgan & Claypool, viewed on December 24, 2014)
650
0
$a
Image stabilization
$3
3314895
650
0
$a
Image processing
$x
Digital techniques
$v
Congresses.
$3
1244089
655
4
$a
Electronic books
$3
959526
776
0 8
$i
Print version:
$z
9781627054409
830
0
$a
Synthesis lectures on computer vision ;
$v
#6.
$x
2153-1056
$3
3314894
856
4 0
$u
http://portal.igpublish.com/iglibrary/search/MCPB0000757.html
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9345250
電子資源
11.線上閱覽_V
電子書
EB TA1655 .E432 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入