語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advancements in applied metaheuristi...
~
Dey, Nilanjan, (1984-)
FindBook
Google Book
Amazon
博客來
Advancements in applied metaheuristic computing
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advancements in applied metaheuristic computing/ Nilanjan Dey, editor.
其他作者:
Dey, Nilanjan,
出版者:
Hershey, Pennsylvania :IGI Global, : [2018],
面頁冊數:
1 online resource (xxi, 335 p.)
內容註:
Section 1. Meta-heuristic optimization-algorithms-based advanced applications. Chapter 1. Multi-objective optimal power flow using metaheuristic optimization algorithms with unified power flow controller to enhance the power system performance ; Chapter 2. Analyzing and predicting the QoS of traffic in wiMAX network using gene expression programming ; Chapter 3. Chaotic differential-evolution-based fuzzy contrast stretching method ; Chapter 4. Protein motif comparator using bio-inspired two-way K-means ; Chapter 5. Metaheuristics in manufacturing: predictive modeling of tool wear in machining using genetic programming ; Chapter 6. Intelligent computing in medical imaging: a study ; Chapter 7. Effect of SMES unit in AGC of an interconnected multi-area thermal power system with ACO-tuned PID controller ; Chapter 8. Meta-heuristic algorithms in medical image segmentation: a review -- Section 2. Genetic algorithm applications. Chapter 9. Optimized crossover jumpX in genetic algorithm for general routing problems: a crossover survey and enhancement ; Chapter 10. On developing and performance evaluation of adaptive second order neural network with GA-based training (ASONN-GA) for financial time series prediction ; Chapter 11. Hybrid non-dominated sorting genetic algorithm: II-neural network approach.
標題:
Systems engineering - Data processing. -
電子資源:
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-4151-6
ISBN:
9781522541523 (ebook)
Advancements in applied metaheuristic computing
Advancements in applied metaheuristic computing
[electronic resource] /Nilanjan Dey, editor. - Hershey, Pennsylvania :IGI Global,[2018] - 1 online resource (xxi, 335 p.)
Includes bibliographical references and index.
Section 1. Meta-heuristic optimization-algorithms-based advanced applications. Chapter 1. Multi-objective optimal power flow using metaheuristic optimization algorithms with unified power flow controller to enhance the power system performance ; Chapter 2. Analyzing and predicting the QoS of traffic in wiMAX network using gene expression programming ; Chapter 3. Chaotic differential-evolution-based fuzzy contrast stretching method ; Chapter 4. Protein motif comparator using bio-inspired two-way K-means ; Chapter 5. Metaheuristics in manufacturing: predictive modeling of tool wear in machining using genetic programming ; Chapter 6. Intelligent computing in medical imaging: a study ; Chapter 7. Effect of SMES unit in AGC of an interconnected multi-area thermal power system with ACO-tuned PID controller ; Chapter 8. Meta-heuristic algorithms in medical image segmentation: a review -- Section 2. Genetic algorithm applications. Chapter 9. Optimized crossover jumpX in genetic algorithm for general routing problems: a crossover survey and enhancement ; Chapter 10. On developing and performance evaluation of adaptive second order neural network with GA-based training (ASONN-GA) for financial time series prediction ; Chapter 11. Hybrid non-dominated sorting genetic algorithm: II-neural network approach.
Restricted to subscribers or individual electronic text purchasers.
"This book considers the foremost optimization algorithms in several applications. It deals primarily with methods and approaches that include meta-heuristics for further systems improvements. It grants substantial frameworks and the most contemporary empirical research outcomes in employing optimization algorithms"--
ISBN: 9781522541523 (ebook)Subjects--Topical Terms:
1581530
Systems engineering
--Data processing.
LC Class. No.: TA168 / .A286 2018e
Dewey Class. No.: 006.3
Advancements in applied metaheuristic computing
LDR
:02609nmm a2200277 a 4500
001
2137986
003
IGIG
005
20181029175340.0
006
m o d
007
cr cn
008
181117s2018 pau fob 001 0 eng d
010
$z
2017028945
020
$a
9781522541523 (ebook)
020
$a
9781522541516 (hardcover)
035
$a
(OCoLC)1011023965
035
$a
1071025357
040
$a
CaBNVSL
$b
eng
$c
CaBNVSL
$d
CaBNVSL
050
4
$a
TA168
$b
.A286 2018e
082
0 4
$a
006.3
$2
23
245
0 0
$a
Advancements in applied metaheuristic computing
$h
[electronic resource] /
$c
Nilanjan Dey, editor.
260
$a
Hershey, Pennsylvania :
$b
IGI Global,
$c
[2018]
300
$a
1 online resource (xxi, 335 p.)
504
$a
Includes bibliographical references and index.
505
0
$a
Section 1. Meta-heuristic optimization-algorithms-based advanced applications. Chapter 1. Multi-objective optimal power flow using metaheuristic optimization algorithms with unified power flow controller to enhance the power system performance ; Chapter 2. Analyzing and predicting the QoS of traffic in wiMAX network using gene expression programming ; Chapter 3. Chaotic differential-evolution-based fuzzy contrast stretching method ; Chapter 4. Protein motif comparator using bio-inspired two-way K-means ; Chapter 5. Metaheuristics in manufacturing: predictive modeling of tool wear in machining using genetic programming ; Chapter 6. Intelligent computing in medical imaging: a study ; Chapter 7. Effect of SMES unit in AGC of an interconnected multi-area thermal power system with ACO-tuned PID controller ; Chapter 8. Meta-heuristic algorithms in medical image segmentation: a review -- Section 2. Genetic algorithm applications. Chapter 9. Optimized crossover jumpX in genetic algorithm for general routing problems: a crossover survey and enhancement ; Chapter 10. On developing and performance evaluation of adaptive second order neural network with GA-based training (ASONN-GA) for financial time series prediction ; Chapter 11. Hybrid non-dominated sorting genetic algorithm: II-neural network approach.
506
$a
Restricted to subscribers or individual electronic text purchasers.
520
3
$a
"This book considers the foremost optimization algorithms in several applications. It deals primarily with methods and approaches that include meta-heuristics for further systems improvements. It grants substantial frameworks and the most contemporary empirical research outcomes in employing optimization algorithms"--
$c
Provided by publisher.
650
0
$a
Systems engineering
$x
Data processing.
$3
1581530
650
0
$a
Heuristic algorithms.
$3
1066682
650
0
$a
Mathematical optimization.
$3
517763
650
0
$a
Artificial intelligence.
$3
516317
700
1
$a
Dey, Nilanjan,
$d
1984-
$e
editor.
$3
3231517
856
4 0
$u
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-4151-6
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9344680
電子資源
11.線上閱覽_V
電子書
EB TA168 .A286 2018e
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入