語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big data analytics in HIV/AIDS research
~
Al Mazari, Ali, (1971-)
FindBook
Google Book
Amazon
博客來
Big data analytics in HIV/AIDS research
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big data analytics in HIV/AIDS research/ Ali Al Mazari, editor.
其他作者:
Al Mazari, Ali,
出版者:
Hershey, Pennsylvania :IGI Global, : [2018],
面頁冊數:
1 online resource (xxix, 294 p.)
內容註:
Chapter 1. Computational analysis of reverse transcriptase resistance to inhibitors in HIV-1 -- Chapter 2. Statistical and computational needs for big data challenges -- Chapter 3. Usage of big data prediction techniques for predictive analysis in HIV/AIDS -- Chapter 4. Computational and data mining perspectives on HIV/AIDS in big data era: opportunities, challenges, and future directions -- Chapter 5. Risks, security, and privacy for HIV/AIDS data: big data perspective -- Chapter 6. Prevalence in MSM is enhanced by role versatility -- Chapter 7. Dissection of HIV-1 protease subtype B inhibitors resistance through molecular modeling approaches: resistance to protease inhibitors -- Chapter 8. HIV-associated neurocognitive disorder: the interaction between HIV-1 and dopamine transporter structure.
標題:
HIV infections - Treatment. -
電子資源:
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3203-3
ISBN:
9781522532040 (ebook)
Big data analytics in HIV/AIDS research
Big data analytics in HIV/AIDS research
[electronic resource] /Ali Al Mazari, editor. - Hershey, Pennsylvania :IGI Global,[2018] - 1 online resource (xxix, 294 p.)
Includes bibliographical references and index.
Chapter 1. Computational analysis of reverse transcriptase resistance to inhibitors in HIV-1 -- Chapter 2. Statistical and computational needs for big data challenges -- Chapter 3. Usage of big data prediction techniques for predictive analysis in HIV/AIDS -- Chapter 4. Computational and data mining perspectives on HIV/AIDS in big data era: opportunities, challenges, and future directions -- Chapter 5. Risks, security, and privacy for HIV/AIDS data: big data perspective -- Chapter 6. Prevalence in MSM is enhanced by role versatility -- Chapter 7. Dissection of HIV-1 protease subtype B inhibitors resistance through molecular modeling approaches: resistance to protease inhibitors -- Chapter 8. HIV-associated neurocognitive disorder: the interaction between HIV-1 and dopamine transporter structure.
Restricted to subscribers or individual electronic text purchasers.
This book provides emerging research on the development and implementation of computational techniques in big data analysis for biological and medical practices. While highlighting topics such as deep learning, management software, and molecular modeling, this publication explores the various applications of data analysis in clinical decision making.
ISBN: 9781522532040 (ebook)Subjects--Topical Terms:
929598
HIV infections
--Treatment.
LC Class. No.: RA643.8 / .B54 2018e
Dewey Class. No.: 614.5/993920072
National Library of Medicine Call No.: WC 503.41 / .B54 2018e
Big data analytics in HIV/AIDS research
LDR
:02152nmm a2200289 a 4500
001
2137921
003
IGIG
005
20181029091933.0
006
m o d
007
cr cn
008
181117s2018 pau fob 001 0 eng d
010
$z
2017022903
020
$a
9781522532040 (ebook)
020
$a
9781522532033 (hardcover)
035
$a
(OCoLC)1029775026
035
$a
1071025291
040
$a
CaBNVSL
$b
eng
$c
CaBNVSL
$d
CaBNVSL
050
4
$a
RA643.8
$b
.B54 2018e
060
1 0
$a
WC 503.41
$b
.B54 2018e
082
0 4
$a
614.5/993920072
$2
23
245
0 0
$a
Big data analytics in HIV/AIDS research
$h
[electronic resource] /
$c
Ali Al Mazari, editor.
260
$a
Hershey, Pennsylvania :
$b
IGI Global,
$c
[2018]
300
$a
1 online resource (xxix, 294 p.)
504
$a
Includes bibliographical references and index.
505
0
$a
Chapter 1. Computational analysis of reverse transcriptase resistance to inhibitors in HIV-1 -- Chapter 2. Statistical and computational needs for big data challenges -- Chapter 3. Usage of big data prediction techniques for predictive analysis in HIV/AIDS -- Chapter 4. Computational and data mining perspectives on HIV/AIDS in big data era: opportunities, challenges, and future directions -- Chapter 5. Risks, security, and privacy for HIV/AIDS data: big data perspective -- Chapter 6. Prevalence in MSM is enhanced by role versatility -- Chapter 7. Dissection of HIV-1 protease subtype B inhibitors resistance through molecular modeling approaches: resistance to protease inhibitors -- Chapter 8. HIV-associated neurocognitive disorder: the interaction between HIV-1 and dopamine transporter structure.
506
$a
Restricted to subscribers or individual electronic text purchasers.
520
$a
This book provides emerging research on the development and implementation of computational techniques in big data analysis for biological and medical practices. While highlighting topics such as deep learning, management software, and molecular modeling, this publication explores the various applications of data analysis in clinical decision making.
650
0
$a
HIV infections
$x
Treatment.
$3
929598
650
0
$a
Big data.
$3
2045508
650
0
$a
Data mining.
$3
562972
650
0
$a
Datasets as Topic
$3
3310922
650
0
$a
HIV Infections
$x
epidemiology
$3
3310923
650
0
$a
Data Mining
$3
3310924
700
1
$a
Al Mazari, Ali,
$d
1971-
$e
editor.
$3
3310921
856
4 0
$u
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3203-3
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9344615
電子資源
11.線上閱覽_V
電子書
EB RA643.8 .B54 2018e
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入