語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Likelihood-free methods for cognitiv...
~
Palestro, James J.
FindBook
Google Book
Amazon
博客來
Likelihood-free methods for cognitive science
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Likelihood-free methods for cognitive science/ by James J. Palestro ... [et al.].
其他作者:
Palestro, James J.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xiv, 129 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions.
Contained By:
Springer eBooks
標題:
Cognitive science - Methodology. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-72425-6
ISBN:
9783319724256
Likelihood-free methods for cognitive science
Likelihood-free methods for cognitive science
[electronic resource] /by James J. Palestro ... [et al.]. - Cham :Springer International Publishing :2018. - xiv, 129 p. :ill., digital ;24 cm. - Computational approaches to cognition and perception,2510-1889. - Computational approaches to cognition and perception..
Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions.
This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science.
ISBN: 9783319724256
Standard No.: 10.1007/978-3-319-72425-6doiSubjects--Topical Terms:
3301463
Cognitive science
--Methodology.
LC Class. No.: BF311
Dewey Class. No.: 153
Likelihood-free methods for cognitive science
LDR
:02241nmm a2200325 a 4500
001
2133706
003
DE-He213
005
20180821102144.0
006
m d
007
cr nn 008maaau
008
181005s2018 gw s 0 eng d
020
$a
9783319724256
$q
(electronic bk.)
020
$a
9783319724249
$q
(paper)
024
7
$a
10.1007/978-3-319-72425-6
$2
doi
035
$a
978-3-319-72425-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
BF311
072
7
$a
JMR
$2
bicssc
072
7
$a
PSY008000
$2
bisacsh
082
0 4
$a
153
$2
23
090
$a
BF311
$b
.L727 2018
245
0 0
$a
Likelihood-free methods for cognitive science
$h
[electronic resource] /
$c
by James J. Palestro ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiv, 129 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Computational approaches to cognition and perception,
$x
2510-1889
505
0
$a
Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions.
520
$a
This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science.
650
0
$a
Cognitive science
$x
Methodology.
$3
3301463
650
1 4
$a
Psychology.
$3
519075
650
2 4
$a
Cognitive Psychology.
$3
891220
700
1
$a
Palestro, James J.
$3
3301462
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Computational approaches to cognition and perception.
$3
3301454
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-72425-6
950
$a
Behavioral Science and Psychology (Springer-41168)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9342441
電子資源
11.線上閱覽_V
電子書
EB BF311
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入