語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Enhanced machine learning and data m...
~
Bergmeir, Philipp.
FindBook
Google Book
Amazon
博客來
Enhanced machine learning and data mining methods for analysing large hybrid electric vehicle fleets based on load spectrum data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Enhanced machine learning and data mining methods for analysing large hybrid electric vehicle fleets based on load spectrum data/ by Philipp Bergmeir.
作者:
Bergmeir, Philipp.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2018.,
面頁冊數:
xxxii, 166 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
http://dx.doi.org/10.1007/978-3-658-20367-2
ISBN:
9783658203672
Enhanced machine learning and data mining methods for analysing large hybrid electric vehicle fleets based on load spectrum data
Bergmeir, Philipp.
Enhanced machine learning and data mining methods for analysing large hybrid electric vehicle fleets based on load spectrum data
[electronic resource] /by Philipp Bergmeir. - Wiesbaden :Springer Fachmedien Wiesbaden :2018. - xxxii, 166 p. :ill., digital ;24 cm. - Wissenschaftliche reihe fahrzeugtechnik universitat stuttgart. - Wissenschaftliche reihe fahrzeugtechnik universitat stuttgart..
Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets. In particular, he presents new approaches for uncovering and describing stress and usage patterns that are related to failures of selected components of the hybrid power-train. Contents Classifying Component Failures of a Vehicle Fleet Visualising Different Kinds of Vehicle Stress and Usage Identifying Usage and Stress Patterns in a Vehicle Fleet Target Groups Students and scientists in the field of automotive engineering and data science Engineers in the automotive industry About the Author Philipp Bergmeir did a PhD in the doctoral program "Promotionskolleg HYBRID" at the Institute for Internal Combustion Engines and Automotive Engineering, University of Stuttgart, in cooperation with the Esslingen University of Applied Sciences and a well-known vehicle manufacturer. Currently, he is working as a data scientist in the automotive industry.
ISBN: 9783658203672
Standard No.: 10.1007/978-3-658-20367-2doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Enhanced machine learning and data mining methods for analysing large hybrid electric vehicle fleets based on load spectrum data
LDR
:02180nmm a2200325 a 4500
001
2132870
003
DE-He213
005
20180807171311.0
006
m d
007
cr nn 008maaau
008
181005s2018 gw s 0 eng d
020
$a
9783658203672
$q
(electronic bk.)
020
$a
9783658203665
$q
(paper)
024
7
$a
10.1007/978-3-658-20367-2
$2
doi
035
$a
978-3-658-20367-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
TRC
$2
bicssc
072
7
$a
TRCS
$2
bicssc
072
7
$a
TEC009090
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.B499 2018
100
1
$a
Bergmeir, Philipp.
$3
3299800
245
1 0
$a
Enhanced machine learning and data mining methods for analysing large hybrid electric vehicle fleets based on load spectrum data
$h
[electronic resource] /
$c
by Philipp Bergmeir.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2018.
300
$a
xxxii, 166 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Wissenschaftliche reihe fahrzeugtechnik universitat stuttgart
520
$a
Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets. In particular, he presents new approaches for uncovering and describing stress and usage patterns that are related to failures of selected components of the hybrid power-train. Contents Classifying Component Failures of a Vehicle Fleet Visualising Different Kinds of Vehicle Stress and Usage Identifying Usage and Stress Patterns in a Vehicle Fleet Target Groups Students and scientists in the field of automotive engineering and data science Engineers in the automotive industry About the Author Philipp Bergmeir did a PhD in the doctoral program "Promotionskolleg HYBRID" at the Institute for Internal Combustion Engines and Automotive Engineering, University of Stuttgart, in cooperation with the Esslingen University of Applied Sciences and a well-known vehicle manufacturer. Currently, he is working as a data scientist in the automotive industry.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Data mining.
$3
562972
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Automotive Engineering.
$3
928032
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Pattern Recognition.
$3
891045
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Wissenschaftliche reihe fahrzeugtechnik universitat stuttgart.
$3
3299801
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-20367-2
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9341605
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入