語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Ensembles of type 2 fuzzy neural mod...
~
Soto, Jesus.
FindBook
Google Book
Amazon
博客來
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction/ by Jesus Soto, Patricia Melin, Oscar Castillo.
作者:
Soto, Jesus.
其他作者:
Melin, Patricia.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
viii, 97 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Time-series analysis. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-71264-2
ISBN:
9783319712642
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
Soto, Jesus.
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
[electronic resource] /by Jesus Soto, Patricia Melin, Oscar Castillo. - Cham :Springer International Publishing :2018. - viii, 97 p. :ill. (some col.), digital ;24 cm. - Springerbriefs in applied sciences and technology,2191-530X. - Springerbriefs in applied sciences and technology..
This book focuses on the fields of hybrid intelligent systems based on fuzzy systems, neural networks, bio-inspired algorithms and time series. This book describes the construction of ensembles of Interval Type-2 Fuzzy Neural Networks models and the optimization of their fuzzy integrators with bio-inspired algorithms for time series prediction. Interval type-2 and type-1 fuzzy systems are used to integrate the outputs of the Ensemble of Interval Type-2 Fuzzy Neural Network models. Genetic Algorithms and Particle Swarm Optimization are the Bio-Inspired algorithms used for the optimization of the fuzzy response integrators. The Mackey-Glass, Mexican Stock Exchange, Dow Jones and NASDAQ time series are used to test of performance of the proposed method. Prediction errors are evaluated by the following metrics: Mean Absolute Error, Mean Square Error, Root Mean Square Error, Mean Percentage Error and Mean Absolute Percentage Error. The proposed prediction model outperforms state of the art methods in predicting the particular time series considered in this work.
ISBN: 9783319712642
Standard No.: 10.1007/978-3-319-71264-2doiSubjects--Topical Terms:
532530
Time-series analysis.
LC Class. No.: QA280
Dewey Class. No.: 519.55
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
LDR
:02154nmm a2200313 a 4500
001
2132293
003
DE-He213
005
20180720095713.0
006
m d
007
cr nn 008maaau
008
181005s2018 gw s 0 eng d
020
$a
9783319712642
$q
(electronic bk.)
020
$a
9783319712635
$q
(paper)
024
7
$a
10.1007/978-3-319-71264-2
$2
doi
035
$a
978-3-319-71264-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA280
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
519.55
$2
23
090
$a
QA280
$b
.S718 2018
100
1
$a
Soto, Jesus.
$3
3298671
245
1 0
$a
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
$h
[electronic resource] /
$c
by Jesus Soto, Patricia Melin, Oscar Castillo.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
viii, 97 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springerbriefs in applied sciences and technology,
$x
2191-530X
520
$a
This book focuses on the fields of hybrid intelligent systems based on fuzzy systems, neural networks, bio-inspired algorithms and time series. This book describes the construction of ensembles of Interval Type-2 Fuzzy Neural Networks models and the optimization of their fuzzy integrators with bio-inspired algorithms for time series prediction. Interval type-2 and type-1 fuzzy systems are used to integrate the outputs of the Ensemble of Interval Type-2 Fuzzy Neural Network models. Genetic Algorithms and Particle Swarm Optimization are the Bio-Inspired algorithms used for the optimization of the fuzzy response integrators. The Mackey-Glass, Mexican Stock Exchange, Dow Jones and NASDAQ time series are used to test of performance of the proposed method. Prediction errors are evaluated by the following metrics: Mean Absolute Error, Mean Square Error, Root Mean Square Error, Mean Percentage Error and Mean Absolute Percentage Error. The proposed prediction model outperforms state of the art methods in predicting the particular time series considered in this work.
650
0
$a
Time-series analysis.
$3
532530
650
0
$a
Fuzzy algorithms.
$3
895969
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
700
1
$a
Melin, Patricia.
$3
855558
700
1
$a
Castillo, Oscar.
$3
855557
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springerbriefs in applied sciences and technology.
$3
3298265
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-71264-2
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9341028
電子資源
11.線上閱覽_V
電子書
EB QA280
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入