語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Towards analytical techniques for op...
~
Lerma, L. Octavio.
FindBook
Google Book
Amazon
博客來
Towards analytical techniques for optimizing knowledge acquisition, processing, propagation, and use in cyberinfrastructure and big data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Towards analytical techniques for optimizing knowledge acquisition, processing, propagation, and use in cyberinfrastructure and big data/ by L. Octavio Lerma, Vladik Kreinovich.
作者:
Lerma, L. Octavio.
其他作者:
Kreinovich, Vladik.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
viii, 141 p. :ill., digital ;24 cm.
內容註:
Introduction -- Data Acquisition: Towards Optimal Use of Sensors -- Data and Knowledge Processing -- Knowledge Propagation and Resulting Knowledge Enhancement -- Knowledge Use -- Conclusions.
Contained By:
Springer eBooks
標題:
Electronic data processing - Distributed processing. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-61349-9
ISBN:
9783319613499
Towards analytical techniques for optimizing knowledge acquisition, processing, propagation, and use in cyberinfrastructure and big data
Lerma, L. Octavio.
Towards analytical techniques for optimizing knowledge acquisition, processing, propagation, and use in cyberinfrastructure and big data
[electronic resource] /by L. Octavio Lerma, Vladik Kreinovich. - Cham :Springer International Publishing :2018. - viii, 141 p. :ill., digital ;24 cm. - Studies in big data,v.292197-6503 ;. - Studies in big data ;v.29..
Introduction -- Data Acquisition: Towards Optimal Use of Sensors -- Data and Knowledge Processing -- Knowledge Propagation and Resulting Knowledge Enhancement -- Knowledge Use -- Conclusions.
This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data. Further, it presents easy-to-use analytical models of knowledge-related processes and their applications. The need for such methods stems from the fact that, when we have to decide where to place sensors, or which algorithm to use for processing the data--we mostly rely on experts' opinions. As a result, the selected knowledge-related methods are often far from ideal. To make better selections, it is necessary to first create easy-to-use models of knowledge-related processes. This is especially important for big data, where traditional numerical methods are unsuitable. The book offers a valuable guide for everyone interested in big data applications: students looking for an overview of related analytical techniques, practitioners interested in applying optimization techniques, and researchers seeking to improve and expand on these techniques.
ISBN: 9783319613499
Standard No.: 10.1007/978-3-319-61349-9doiSubjects--Topical Terms:
548601
Electronic data processing
--Distributed processing.
LC Class. No.: QA76.9.D5
Dewey Class. No.: 004.6
Towards analytical techniques for optimizing knowledge acquisition, processing, propagation, and use in cyberinfrastructure and big data
LDR
:02301nmm a2200325 a 4500
001
2130902
003
DE-He213
005
20170829141704.0
006
m d
007
cr nn 008maaau
008
181005s2018 gw s 0 eng d
020
$a
9783319613499
$q
(electronic bk.)
020
$a
9783319613482
$q
(paper)
024
7
$a
10.1007/978-3-319-61349-9
$2
doi
035
$a
978-3-319-61349-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
004.6
$2
23
090
$a
QA76.9.D5
$b
L616 2018
100
1
$a
Lerma, L. Octavio.
$3
3295922
245
1 0
$a
Towards analytical techniques for optimizing knowledge acquisition, processing, propagation, and use in cyberinfrastructure and big data
$h
[electronic resource] /
$c
by L. Octavio Lerma, Vladik Kreinovich.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
viii, 141 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.29
505
0
$a
Introduction -- Data Acquisition: Towards Optimal Use of Sensors -- Data and Knowledge Processing -- Knowledge Propagation and Resulting Knowledge Enhancement -- Knowledge Use -- Conclusions.
520
$a
This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data. Further, it presents easy-to-use analytical models of knowledge-related processes and their applications. The need for such methods stems from the fact that, when we have to decide where to place sensors, or which algorithm to use for processing the data--we mostly rely on experts' opinions. As a result, the selected knowledge-related methods are often far from ideal. To make better selections, it is necessary to first create easy-to-use models of knowledge-related processes. This is especially important for big data, where traditional numerical methods are unsuitable. The book offers a valuable guide for everyone interested in big data applications: students looking for an overview of related analytical techniques, practitioners interested in applying optimization techniques, and researchers seeking to improve and expand on these techniques.
650
0
$a
Electronic data processing
$x
Distributed processing.
$3
548601
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Big Data/Analytics.
$3
2186785
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
700
1
$a
Kreinovich, Vladik.
$3
1965595
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.29.
$3
3295923
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-61349-9
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9339637
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入